AI Article Synopsis

Article Abstract

Bile salts (BSs) are naturally occurring rigid surfactants with a steroidal skeleton and specific self-assembly and interface behaviors. Using bile salts as precursors, derivatives can be synthesized to obtain molecules with specific functionalities and amphiphilic structure. Modifications on single molecules are normally performed by substituting the least-hindered hydroxyl group on carbon C-3 of the steroidal A ring or at the end of the lateral chain. This leads to monosteroidal rigid building blocks that are often able to self-organize into 1D structures such as tubules, twisted ribbons, and fibrils with helical supramolecular packing. Tubular aggregates are of particular interest, and they are characterized by cross-section inner diameters spanning a wide range of values (3-500 nm). They can form through appealing pH- or temperature-responsive aggregation and in mixtures of bile salt derivatives to provide mixed tubules with tunable charge and size. Other derivatives can be prepared by covalently linking two or more bile salt molecules to provide complex systems such as oligomers, dendrimers, and polymeric materials. The unconventional amphiphilic molecular structure imparts specific features to BSs and derivatives that can be exploited in the formulation of capsules, drug carriers, dispersants, and templates for the synthesis of nanomaterials.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.8b02657DOI Listing

Publication Analysis

Top Keywords

bile salts
12
bile salt
8
bile
5
salts natural
4
natural surfactants
4
surfactants precursors
4
precursors broad
4
broad family
4
family complex
4
complex amphiphiles
4

Similar Publications

Long-term effects of Nε-carboxymethyllysine intake on intestinal barrier permeability: Associations with gut microbiota and bile acids.

Food Res Int

February 2025

Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, PR China. Electronic address:

Advanced glycation end products (AGEs) in processed foods are closely linked to intestinal injury. However, the long-term effects of exposure to free Nɛ-carboxymethyl lysine (CML), a prevalent AGE molecule, on intestinal barrier integrity have been rarely evaluated. This study investigated the temporal effects of CML exposure on intestinal barrier permeability in C57BL/6N mice at diet-related doses over 12, 14, and 16 weeks.

View Article and Find Full Text PDF

Lysosomal dysfunction and inflammatory sterol metabolism in pulmonary arterial hypertension.

Science

January 2025

Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA.

Vascular inflammation regulates endothelial pathophenotypes, particularly in pulmonary arterial hypertension (PAH). Dysregulated lysosomal activity and cholesterol metabolism activate pathogenic inflammation, but their relevance to PAH is unclear. Nuclear receptor coactivator 7 () deficiency in endothelium produced an oxysterol and bile acid signature through lysosomal dysregulation, promoting endothelial pathophenotypes.

View Article and Find Full Text PDF

Bile salts are biosurfactants released into the intestinal lumen which play an important role in the solubilisation of fats and certain drugs. Their concentrations vary along the gastrointestinal tract (GIT). This is significant for implementation in physiologically based pharmacokinetic (PBPK) modelling to mechanistically capture drug absorption.

View Article and Find Full Text PDF

Highly Potent New Probiotic Strains from Traditional Turkish Fermented Foods.

Curr Microbiol

January 2025

Department of Nanotechnology Engineering, Abdullah Gul University, Kayseri, Türkiye.

Traditional Turkish fermented foods like boza, pickles, and tarhana are recognized for their nutritional and health benefits, yet the probiotic potential of lactic acid bacteria (LAB) strains isolated from them remains underexplored. Sixty-six LAB strains were isolated from fermented foods using bacterial morphology, Gram staining, and catalase activity. The isolates were differentiated at strain level by RAPD-PCR (Random Amplification of Polymorphic DNA-Polymerase Chain Reaction) and twenty-five strains were selected for further evaluation of acid and bile salt tolerance.

View Article and Find Full Text PDF

Unlabelled: Thiosulfate-citrate-bile salts-sucrose (TCBS) agar is a selective and differential media for the enrichment of pathogenic . We observed that an exonuclease VII ( ) mutant of failed to grow on TCBS agar, suggesting that DNA repair mutant strains may be hampered for growth in this selective media. Examination of the selective components of TCBS revealed that bile acids were primarily responsible for toxicity of the mutant.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!