Porphyrin derivatives have recently emerged as hole transport layers (HTLs) because of their electron-rich characteristics. Although several successes with porphyrin-based HTLs have been recently reported, achieving excellent solar cell performance, the chances to improve this further by molecular engineering are still open. In this work, Zn porphyrin (P)-based HTLs were developed by conjugating fluorinated triphenylamine (FTPA) wings at the perimeter of the P core for low-temperature perovskite solar cells (L-PSCs). The fluorinated P-HTLs (P-2FTPA and P-3FTPA) exhibited superior HTL properties compared to the nonfluorinated one (P-TPA). Moreover, their deeper highest occupied molecular orbital energy levels were beneficial for boosting open-circuit voltages, and their enhanced face-on stacking improved the hole transport properties. The L-PSC using P-2FTPA achieved the highest performance of 18.85%. Thus far, this result is one of the highest reported power conversion efficiencies among the PSCs using porphyrin-based HTLs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.8b10170DOI Listing

Publication Analysis

Top Keywords

hole transport
12
perovskite solar
8
solar cells
8
molecular engineering
8
porphyrin-based htls
8
performance improvement
4
improvement low-temperature-processed
4
low-temperature-processed perovskite
4
cells molecular
4
engineering porphyrin-based
4

Similar Publications

High-Efficiency Y6 Homojunction Organic Solar Cells Enabled by a Secondary Hole Transport Layer.

Small

January 2025

Centre for Organic Photonics & Electronics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia.

Y6 homojunction solar cells are prepared using the exciton/electron-blocking material poly[9,9-di-n-octylfluorene-alt-N-(4-sec-butylphenyl)diphenylamine] (TFB) as a secondary hole transport layer material in conjunction with PEDOT:PSS. Using this device architecture, a maximum power conversion efficiency (PCE) of 2.57% is achieved, which is the highest reported thus far for a solution-processed small molecule homojunction organic photovoltaic (OPV) device.

View Article and Find Full Text PDF

Circularly polarized light-emitting devices have found extensive application prospects in 3D displays and optoelectronic information. Among them, circularly polarized organic light-emitting diodes (CP-OLED), as a rising star of circularly polarized light-emitting devices, achieved good research results. However, the preparation of CP-OLED with a high electroluminescence asymmetry factor and high external quantum efficiency is a hot and difficult research topic.

View Article and Find Full Text PDF

Atmospheric wind energization of ocean weather.

Nat Commun

January 2025

Department of Mechanical Engineering, University of Rochester, Rochester, NY, USA.

Ocean weather comprises vortical and straining mesoscale motions, which play fundamentally different roles in the ocean circulation and climate system. Vorticity determines the movement of major ocean currents and gyres. Strain contributes to frontogenesis and the deformation of water masses, driving much of the mixing and vertical transport in the upper ocean.

View Article and Find Full Text PDF

A Molecular Perspective of Exciton Condensation from Particle-Hole Reduced Density Matrices.

J Phys Chem Lett

January 2025

Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States.

Exciton condensation, the Bose-Einstein-like condensation of quasibosonic particle-hole pairs, has been the subject of much theoretical and experimental interest and holds promise for ultraenergy-efficient technologies. Recent advances in bilayer systems, such as transition metal dichalcogenide heterostructures, have brought us closer to the experimental realization of exciton condensation without the need for high magnetic fields. In this perspective, we explore progress toward understanding and realizing exciton condensation, with a particular focus on the characteristic theoretical signature of exciton condensation: an eigenvalue greater than one in the particle-hole reduced density matrix, which signifies off-diagonal long-range order.

View Article and Find Full Text PDF

Infrared (IR) photodetectors play an important role in many fields such as industry, medicine, security, Achieving high response and maintaining stability in the device performance while reducing materials cost are required for the practical use of optical sensors. This study presents the development of a low-cost but high-performance IR photodetector based on a hybridization of up-conversion microparticles of NaYF:Tm,Yb (UCMPs) and reduced graphene oxide material (RGO). In this combination, UCMPs play the role of absorbing photons from 980 nm excitation light, generating electron-hole pairs, which are useful for sensing applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!