In recent years, metal-organic frameworks (MOFs) have been regarded as one of the most important classes of materials. The combination of various metal clusters and ligands, arranged in a vast array of geometries has led to an ever-expanding MOF family. Each year, new and novel MOF structures are discovered. The structural diversity present in MOFs has significantly expanded the application of these new materials. MOFs show great potential for a variety of applications, including but not limited to: gas storage and separation, catalysis, biomedicine delivery, and chemical sensing. This review intends to offer a short summary of some of the most important topics and recent development in MOFs. The scope of this review shall cover the fundamental aspects concerning the design and synthesis of MOFs and range to the practical applications regarding their stability and derivative structures. Emerging trends of MOF development will also be discussed. These trends shall include multicomponent MOFs, defect development in MOFs, and MOF composites. The ever important structure-property-application relationship for MOFs will also be investigated. Overall, this review provides insight into both existing structures and emerging aspects of MOFs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c8cs00688a | DOI Listing |
Nat Commun
December 2024
Beijing Key Laboratory for Membrane Materials and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
Two-dimensional (2D) metal-organic framework (MOF) nanosheet membranes hold promise for exact molecular transfer due to their structural diversity and well-defined in-plane nanochannels. However, achieving precise regulation of stacking modes between neighboring nanosheets in membrane applications and understanding its influence on separation performance remains unrevealed and challenging. Here, we propose a strategy for accurately controlling the stacking modes of MOF nanosheets via linker polarity regulation.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Chemistry, University of Western Ontario, London, Ontario, N6A 5B7, Canada.
Metal-organic frameworks (MOFs) are a class of porous materials that are of topical interest for their utility in water-related applications. Nevertheless, molecular-level insight into water-MOF interactions and MOF hydrolytic reactivity remains understudied. Herein, we report two hydrolytic pathways leading to either structural stability or framework decomposition of a MOF (ZnMOF-1).
View Article and Find Full Text PDFSmall
December 2024
Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
The demand for temperature-robust electromagnetic wave (EMW) absorption materials is escalating due to the varying operational temperatures of electronic devices, which can easily soar up to 100 °C, significantly affecting EMW interference management. Traditional absorbers face performance degradation across broad temperature ranges due to alterations in electronic mobility and material impedance. This study presented a novel approach by integrating semiconductor metal-organic frameworks (SC-MOFs) with paraffin wax (PW), leveraging the precise control of interlayer spacing in SC-MOFs for electron mobility regulation and the introduction of paraffin wax for temperature-inert electromagnetic properties.
View Article and Find Full Text PDFJACS Au
December 2024
Materials Discovery Laboratory (MaD Lab), Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States.
The capture of carbon dioxide (CO) is crucial for reducing greenhouse emissions and achieving net-zero emission goals. Metal-organic frameworks (MOFs) present a promising solution for carbon capture due to their structural adaptability, tunability, porosity, and pore modification. In this research, we explored the use of a copper (Cu(II))-based MOF called .
View Article and Find Full Text PDFTalanta
December 2024
Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China. Electronic address:
Iron and zinc are two metal ions with important roles in biology, industry and the environment, however, the excess or deficiency of both Fe and Zn can have negative effects on organisms and environment. Therefore, the development of efficient method for simultaneous detection of Fe and Zn provides timely information on metal content, simplifies operations and improves efficiency. In this work, a small molecule (COOH-BPEA) of recognizing Zn modified the four metal-organic-framework (MOF) (UiO-66-X(66, OH, NH and OH/NH)) was developed for the simultaneous detection of Fe and Zn.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!