Many studies have reported the recovery ability of umbilical cord-derived mesenchymal stem cells (UC-MSCs) for neural diseases. In this study, the authors explored the roles of UC-MSCs to treat the traumatic brain injury. Umbilical cord-derived mesenchymal stem cells were isolated from healthy neonatal rat umbilical cord immediately after delivery. The traumatic brain injury (TBI) model was formed by the classical gravity method. The authors detected the behavior changes and measured the levels of inflammatory factors, such as interleukin-lβ and tumor necrosis factor-α by enzyme linked immunosorbent assay (ELISA) at 1, 2, 3, 4 weeks after transplantation between TBI treated and untreated with UC-MSCs. Simultaneously, the expression of glial cell line-derived neurotrophic factor (GDNF) and brain derived neurotrophic factor (BDNF) were measured by real-time-polymerase chain reaction and ELISA.The authors found that the group of transplantation UC-MSCs has a significant improvement than other group treated by phosphate buffered saline. In the behavioral test, the Neurological Severity Scores of UC-MSCs + TBI group were lower than TBI group (P < 0.05), but not obviously higher than control group at 2, 3, and 4week, respectively. The inflammatory factors are significantly reduced comparison with TBI group (P < 0.05), but both GDNF and BDNF were higher than TBI group (P < 0.05). The results indicated that UC-MSCs might play an important role in TBI recovery through inhibiting the release of inflammatory factors and increasing the expression of GDNF and BDNF.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6200375 | PMC |
http://dx.doi.org/10.1097/SCS.0000000000005042 | DOI Listing |
J Mol Cell Cardiol Plus
September 2024
Department of Pathology, Amsterdam University Medical Centres (AUMC), Location VUmc, Amsterdam, the Netherlands.
Aims: Diabetes mellitus (DM) induces increased inflammation of atherosclerotic plaques, resulting in elevated plaque instability. Mesenchymal stem cell (MSC) therapy was shown to decrease plaque size and increase stability in non-DM animal models. We now studied the effect of MSC therapy in a streptozotocin-induced hyperglycaemia mouse model using a clinically relevant dose of adipose tissue-derived MSCs (ASCs).
View Article and Find Full Text PDFRegen Biomater
November 2024
Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Prince of Songkla University, Hatyai 90110, Thailand.
Alveolar ridge loss presents difficulties for implant placement and stability. To address this, alveolar ridge preservation (ARP) is required to maintain bone and avoid the need for ridge augmentation using socket grafting. In this study, a scaffold for ARP was created by fabricating a 3D porous dense microfiber silk fibroin (mSF) embedded in poly(vinyl alcohol) (PVA), which mimics the osteoid template.
View Article and Find Full Text PDFCureus
December 2024
Department of Periodontics, Panineeya Institute of Dental Sciences and Research Centre, Hyderabad, IND.
The field of periodontal regeneration focuses on restoring the form and function of periodontal tissues compromised due to diseases affecting the supporting structures of teeth. Biomaterials have emerged as a vital component in periodontal regenerative therapy, offering a variety of properties that enhance cellular interactions, promote healing, and support tissue reconstruction. This review explores current advances in biomaterials for periodontal regeneration, including ceramics, polymers, and composite scaffolds, and their integration with biological agents like growth factors and stem cells.
View Article and Find Full Text PDFKnee osteoarthritis (KOA) is a healthcare burden affecting over 595 million people worldwide. Recently, intra-articular platelet-rich plasma (PRP) injections from the patient's blood have shown promise in slowing KOA progression due to platelets' regenerative properties. This study aimed to evaluate the optimal dosing and schedule for PRP therapy in managing mild to moderate KOA.
View Article and Find Full Text PDFRegen Ther
March 2025
Research Center for Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China.
Background: Acute kidney injury (AKI) is a life-threatening clinical syndrome with no effective treatment currently available. This study aims to investigate whether Iron-Quercetin complex (IronQ) pretreatment can enhance the therapeutic efficacy of Mesenchymal stem cells (MSCs) in AKI and explore the underlying mechanisms.
Methods: A cisplatin-induced AKI model was established in male C57BL/6 mice, followed by the intravenous administration of 1x10ˆ6 MSCs or IronQ-pretreated MSCs (MSC).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!