The nucleus accumbens (NAc) is important for learning from feedback, and for biasing and invigorating behaviour in response to cues that predict motivationally relevant outcomes. NAc encodes outcome-related cue features such as the magnitude and identity of reward. However, little is known about how features of cues themselves are encoded. We designed a decision making task where rats learned multiple sets of outcome-predictive cues, and recorded single-unit activity in the NAc during performance. We found that coding of cue identity and location occurred alongside coding of expected outcome. Furthermore, this coding persisted both during a delay period, after the rat made a decision and was waiting for an outcome, and after the outcome was revealed. Encoding of cue features in the NAc may enable contextual modulation of on-going behaviour, and provide an eligibility trace of outcome-predictive stimuli for updating stimulus-outcome associations to inform future behaviour.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6195350 | PMC |
http://dx.doi.org/10.7554/eLife.37275 | DOI Listing |
Nat Mater
January 2025
Mechanisms of Morphogenesis Lab, Gulbenkian Institute of Science (IGC), Oeiras, Portugal.
Directed collective cell migration is essential for morphogenesis, and chemical, electrical, mechanical and topological features have been shown to guide cell migration in vitro. Here we provide in vivo evidence showing that endogenous electric fields drive the directed collective cell migration of an embryonic stem cell population-the cephalic neural crest of Xenopus laevis. We demonstrate that the voltage-sensitive phosphatase 1 is a key component of the molecular mechanism, enabling neural crest cells to specifically transduce electric fields into a directional cue in vivo.
View Article and Find Full Text PDFJ Neural Eng
January 2025
University of Pittsburgh, 1622 Locust St, Pittsburgh, Pennsylvania, 15219, UNITED STATES.
Real-world implementation of brain-computer interfaces (BCI) for continuous control of devices should ideally rely on fully asynchronous decoding approaches. That is, the decoding algorithm should continuously update its output by estimating the user's intended actions from real-time neural activity, without the need for any temporal alignment to an external cue. This kind of open-ended temporal flexibility is necessary to achieve naturalistic and intuitive control, but presents a challenge: how do we know when it is appropriate to decode anything at all? Activity in motor cortex is dynamic and modulates with many different types of actions (proximal arm control, hand control, speech, etc.
View Article and Find Full Text PDFSubstance use disorders (SUDs) are a significant public health concern, with over 30% failing available treatment. Severe SUD is characterized by drug-cue reactivity that predicts treatment-failure. We leveraged this pathophysiological feature to personalize deep brain stimulation (DBS) of the nucleus accumbens region (NAc) in an SUD patient.
View Article and Find Full Text PDFCan one shift attention among voices at a cocktail party during a silent pause? Researchers have required participants to attend to one of two simultaneous voices - cued by its gender or location. Switching the target gender or location has resulted in a performance 'switch cost' - which was recently shown to reduce with preparation when a gender cue was presented in advance. The current study asks if preparation for a switch is also effective when a voice is selected by location.
View Article and Find Full Text PDFAddict Biol
January 2025
Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, Minnesota, USA.
The ventromedial prefrontal cortex (VMPFC), located along the medial aspect of the frontal area, plays a critical role in regulating arousal/emotions. Its intricate connections with subcortical structures, including the striatum and amygdala, highlight the VMPFC's importance in the neurocircuitry of addiction. Due to these features, the VMPFC is considered a promising target for transcranial magnetic stimulation (TMS) in substance use disorders (SUD).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!