The folding of RNA into a wide range of structures is essential for its diverse biological functions from enzymatic catalysis to ligand binding and gene regulation. The unfolding and refolding of individual RNA molecules can be probed by single-molecule force spectroscopy (SMFS), enabling detailed characterization of the conformational dynamics of the molecule as well as the free-energy landscape underlying folding. Historically, high-precision SMFS studies of RNA have been limited to custom-built optical traps. Although commercial atomic force microscopes (AFMs) are widely deployed and offer significant advantages in ease-of-use over custom-built optical traps, traditional AFM-based SMFS lacks the sensitivity and stability to characterize individual RNA molecules precisely. Here, we developed a high-precision SMFS assay to study RNA folding using a commercial AFM and applied it to characterize a small RNA hairpin from HIV that plays a key role in stimulating programmed ribosomal frameshifting. We achieved rapid data acquisition in a dynamic assay, unfolding and then refolding the same individual hairpin more than 1,100 times in 15 min. In comparison to measurements using optical traps, our AFM-based assay featured a stiffer force probe and a less compliant construct, providing a complementary measurement regime that dramatically accelerated equilibrium folding dynamics. Not only did kinetic analysis of equilibrium trajectories of the HIV RNA hairpin yield the traditional parameters used to characterize folding by SMFS (zero-force rate constants and distances to the transition state), but we also reconstructed the full 1D projection of the folding free-energy landscape comparable to state-of-the-art studies using dual-beam optical traps, a first for this RNA hairpin and AFM studies of nucleic acids in general. Looking forward, we anticipate that the ease-of-use of our high-precision assay implemented on a commercial AFM will accelerate studying folding of diverse nucleic acid structures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.8b02597 | DOI Listing |
Int J Mol Sci
December 2024
Department of Molecular Biology, Ariel University, Ariel 40700, Israel.
Loss of function screens using shRNA (short hairpin RNA) and CRISPR (clustered regularly interspaced short palindromic repeats) are routinely used to identify genes that modulate responses of tumor cells to anti-cancer drugs. Here, by integrating GSEA (Gene Set Enrichment Analysis) and CMAP (Connectivity Map) analyses of multiple published shRNA screens, we identified a core set of pathways that affect responses to multiple drugs with diverse mechanisms of action. This suggests that these pathways represent "weak points" or "Achilles heels", whose mild disturbance should make cancer cells vulnerable to a variety of treatments.
View Article and Find Full Text PDFBiomolecules
December 2024
Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
In homeostatic conditions, the basal progenitor cells of the esophagus differentiate into a stratified squamous epithelium. However, in the setting of acid exposure or inflammation, there is a marked failure of basal cell differentiation, leading to basal cell hyperplasia. We have previously shown that lysyl oxidase (LOX), a collagen crosslinking enzyme, is upregulated in the setting of allergic inflammation of the esophagus; however, its role beyond collagen crosslinking is unknown.
View Article and Find Full Text PDFPostgrad Med J
January 2025
Department of Pediatric Metabolic Diseases, University of Health Sciences, Ankara Etlik City Hospital, Ankara 06170, Turkey.
Metabolism is the name given to all of the chemical reactions in the cell involving thousands of proteins, including enzymes, receptors, and transporters. Inborn errors of metabolism (IEM) are caused by defects in the production and breakdown of proteins, fats, and carbohydrates. Micro ribonucleic acids (miRNAs) are short non-coding RNA molecules, ⁓19-25 nucleotides long, hairpin-shaped, produced from DNA.
View Article and Find Full Text PDFCytotechnology
February 2025
Department of Sports Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 261 Datong Road, Yuexiu District, Guangzhou, 510105 Guangdong China.
Unlabelled: Cartilage and joint damage can lead to cartilage degeneration. Bone marrow mesenchymal stem cells (BMSCs) have the potential to address cartilage damage. Hence, this study probed the mechanism of BMSC-extracellular matrix (BMSC-ECM) in promoting damaged chondrocyte repair by regulating the Notch1/RBPJ pathway.
View Article and Find Full Text PDFThe 1.7 kb DRAIC long noncoding RNA inhibits tumor growth, inhibits cancer cell invasion, migration, colony formation and interacts with IKK (IκB kinase) subunits, inhibiting the phosphorylation and degradation of the NF-κB inhibitor, IκB, to suppress the activation of NF-κB. Whether these activities are all linked is unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!