The aim of the present study was to measure the expression of Claudin (CLDN) 1 in nasopharyngeal carcinoma (NPC) and to determine its biological function and mechanism of action. Reverse transcription-quantitative polymerase chain reaction and western blotting were performed to measure the expression of CLDN1 mRNA and protein, respectively, in the immortalized human nasopharyngeal epithelial cell line NP69 and NPC-TW01 cells. Subsequently, small interfering RNA against CLDN1 and the LV-GFP-PURO-CLDN1 lentivirus were transfected into NPC-TW01 cells. Western blotting was used to determine the effects of CLDN1 down- and upregulation on the expression of the epithelial mesenchymal transition (EMT) markers E-cadherin and vimentin. In addition, the effect of CLDN1 on the expression of β-Catenin was determined. The results demonstrated that levels of CLDN1 mRNA and protein in NPC cells were significantly higher than in NP69 cells. Furthermore, the downregulation of CLDN1 inhibited the proliferation, invasion and migration of NPC-TW01 cells. The results of western blotting demonstrated that the downregulation of CLDN1 resulted in the upregulation of E-cadherin and inhibition of vimentin in NPC-TW01 cells. By contrast, the overexpression of CLDN1 resulted in the downregulation of E-cadherin and upregulation of vimentin in NPC-TW01 cells. The downregulation of β-catenin attenuated the cancer-promoting effect of CLDN1 on NPC-TW01 cells, whereas the upregulation of β-catenin reversed the tumor-suppressing effect of CLDN1 downregulation on NPC-TW01 cells. The results of the present study therefore demonstrate that CLDN1 expression is elevated in NPC cells. As an oncogene, CLDN1 promotes the proliferation, invasion and migration of NPC cells by upregulating the expression and nuclear entry of β-catenin.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6143911PMC
http://dx.doi.org/10.3892/etm.2018.6619DOI Listing

Publication Analysis

Top Keywords

npc-tw01 cells
28
proliferation invasion
12
invasion migration
12
cells
12
western blotting
12
cldn1
12
npc cells
12
promotes proliferation
8
nasopharyngeal carcinoma
8
cells upregulating
8

Similar Publications

Although the combination of chemotherapy and radiotherapy has increased the survival rate of patients with nasopharyngeal carcinoma (NPC), certain patients do not respond well to the treatment and have a poor prognosis. Therefore, novel therapeutic drugs and strategies to improve prognosis of patients with NPC are required. As certain plant extracts can suppress the viability of cancer cells, the present study investigated whether oligonol, a polyphenolic compound primarily found in lychee fruit, exerts anticancer activities in NPC cells.

View Article and Find Full Text PDF

Pyrazolopyrimidine derivatives, including pyrazolopyrimidines, 6-aminopyrazolopyrimidines, 6-[(formyloxy)methyl]pyrazolopyrimidines, 6-(hydroxymethyl)pyrazolopyrimidine, and 6-(aminomethyl)pyrazolopyrimidines have been successfully prepared and tested against NCI-H226, NPC-TW01, and Jurkat cancer cell lines. Among the tested pyrazolopyrimidine compounds, we found 6-aminopyrazolopyrimidines and 6-(aminomethyl)pyrazolopyrimidines with essential o-ClPh or p-ClPh substituted moieties on N-1 pyrazole ring exhibited the best IC inhibition activity for Jurkat cells. Furthermore, optimization of the SAR study on the C-6 position of pyrazolopyrimidine ring demonstrated that 6-(N-substituted-methyl)pyrazolopyrimidines 17b, 17d, and 19d possessed the significant IC inhibitory activity for the different leukemia cell lines, especially for Jurkat, K-562, and HL-60.

View Article and Find Full Text PDF

Enhancer infestation drives tumorigenic activation of inactive B compartment in Epstein-Barr virus-positive nasopharyngeal carcinoma.

EBioMedicine

April 2024

Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan; Health and Disease Omics Center, Chiba University, Chiba, 260-8670, Japan. Electronic address:

Background: Nasopharyngeal carcinoma (NPC) is an Epstein-Barr virus (EBV)-associated malignant epithelial tumor endemic to Southern China and Southeast Asia. While previous studies have revealed a low frequency of gene mutations in NPC, its epigenomic aberrations are not fully elucidated apart from DNA hypermethylation. Epigenomic rewiring and enhancer dysregulation, such as enhancer hijacking due to genomic structural changes or extrachromosomal DNA, drive cancer progression.

View Article and Find Full Text PDF

Background/aim: Current NPC treatment methods have improved the 5-year survival rates of patients; however, some patients do not benefit from the treatments. Therefore, the existing treatment methods or new drugs must be developed to improve the patient's prognosis. NAD (P)H:quinone oxidoreductase 1 (NQO1), an electron reductase highly expressed in various cancers, can convert aziridinyl-substituted quinone-derived compound into an alkylating agent, resulting in cell apoptosis.

View Article and Find Full Text PDF

METCAM/MUC18 Plays a Tumor Suppressor Role in the Development of Nasopharyngeal Carcinoma Type I.

Int J Mol Sci

November 2022

Department of Bioscience Technology, Chung Yuan Christian University, Chung Li District, Taoyuan City 32023, Taiwan.

From previous studies of negatively correlating the expression of human METCAM/MUC18 with the pathology of nasopharyngeal carcinoma (NPC), we have suggested that human METCAM/MUC18 (huMETCAM/MUC18) might play a tumor suppressor role in the development of nasopharyngeal carcinoma. To scrutinize this hypothesis, we investigated the effects of huMETCAM/MUC18's over-expression on in vitro cellular behavior and on the in vivo tumorigenesis of one NPC cell line (NPC-TW01). HuMETCAM/MUC18 cDNA was first transfected into the NPC-TW01 cell line, which was established from NPC type I, and many G418-resistant clones were obtained.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!