The genetic mutation is the most common cause of familial frontotemporal dementia (FTD) and motor neuron disease (MND). Previous family studies suggest that while some common clinical features may distinguish gene carriers from sporadic patients, the clinical features, age of onset and disease progression vary considerably in affected patients. Whilst disease presentations may vary across families, age at disease onset appears to be relatively uniform within each family. Here, we report two individuals with a repeat expansion from two generations of the same family with markedly different age at disease onset, clinical presentation and disease progression: one who developed motor neuron and behavioural symptoms in their mid 40s and died 3 years later with confirmed TDP-43 pathology and MND; and a second who developed cognitive and mild behavioural symptoms in their mid 70s and 8 years later remains alive with only slow deterioration. This report highlights the phenotypic variability, including age of onset, within a family with the repeat expansion.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6129762 | PMC |
http://dx.doi.org/10.3389/fpsyg.2018.01615 | DOI Listing |
Crystallin proteins serve as both essential structural and as well as protective components of the ocular lens and are required for the transparency and light refraction properties of the organ. The mouse lens crystallin proteome is represented by αA-, αB-, βA1-, βA2-, βA3-, βA4-, βB1-, βB2-, βB3-, γA-, γB-, γC-, γD-, γE, γF-, γN-, and γS-crystallin proteins encoded by 16 genes. Their mutations are responsible for lens opacification and early onset cataract formation.
View Article and Find Full Text PDFAm J Hum Genet
January 2025
Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Institute of Human Genetics, University of Regensburg, 93053 Regensburg, Germany; Institute of Clinical Human Genetics, University Hospital Regensburg, 93053 Regensburg, Germany. Electronic address:
BCL11B is a Cys2-His2 zinc-finger (C2H2-ZnF) domain-containing, DNA-binding, transcription factor with established roles in the development of various organs and tissues, primarily the immune and nervous systems. BCL11B germline variants have been associated with a variety of developmental syndromes. However, genotype-phenotype correlations along with pathophysiologic mechanisms of selected variants mostly remain elusive.
View Article and Find Full Text PDFEur J Pediatr
January 2025
Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy.
Unlabelled: Klinefelter syndrome (KS) is the most common sex chromosomal aneuploidy in males (47,XXY karyotype in 80-90% of cases), primarily characterized by hypergonadotropic hypogonadism and infertility. It encompasses a broad phenotypic spectrum, leading to variability in neurocognitive and psychosocial outcomes among affected individuals. Despite the recognized correlation between KS and various neuropsychiatric conditions, studies investigating potential sleep disorders, particularly in pediatric subjects, are lacking.
View Article and Find Full Text PDFJ Clin Med
December 2024
Division of Endocrinology, Diabetes and Metabolism, ENDO-ERN Center for Rare Pediatric Endocrine Disorders, First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, 11527 Athens, Greece.
Kenny-Caffey syndrome 2 (KCS2) is a rare cause of hypoparathyroidism, inherited in an autosomal dominant mode, resulting from pathogenic variants of the gene, which is implicated in intracellular pathways regulating parathormone (PTH) synthesis and skeletal and parathyroid gland development. : The case of a boy is reported, presenting with the characteristic and newly identified clinical, biochemical, radiological, and genetic abnormalities of KCS2. : The proband had noticeable dysmorphic features, and the closure of the anterior fontanel was delayed until the age of 4 years.
View Article and Find Full Text PDFCancers (Basel)
January 2025
Computational Neuroscience Outcomes Center, Department of Neurosurgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA.
Background: The digital phenotyping tool has great potential for the deep characterization of neurological and quality-of-life assessments in brain tumor patients. Phone communication activities (details on call and text use) can provide insight into the patients' sociability.
Methods: We prospectively collected digital-phenotyping data from six brain tumor patients.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!