In daily interactions, our sensorimotor system accounts for spatial and temporal discrepancies between the senses. Functional lateralization between hemispheres causes differences in attention and in the control of action across the left and right workspaces. In addition, differences in transmission delays between modalities affect movement control and internal representations. Studies on motor impairments such as hemispatial neglect syndrome suggested a link between lateral spatial biases and temporal processing. To understand this link, we computationally modeled and experimentally validated the effect of laterally asymmetric delay in visual feedback on motor learning and its transfer to the control of drawing movements without visual feedback. In the behavioral experiments, we asked healthy participants to perform lateral reaching movements while adapting to delayed visual feedback in either left, right, or both workspaces. We found that the adaptation transferred to blind drawing and caused movement elongation, which is consistent with a state representation of the delay. However, the pattern of the spatial effect varied between conditions: whereas adaptation to delay in only the left workspace or in the whole workspace caused selective leftward elongation, adaptation to delay in only the right workspace caused drawing elongation in both directions. We simulated arm movements according to different models of perceptual and motor spatial asymmetry in the representation of delay and found that the best model that accounts for our results combines both perceptual and motor asymmetry between the hemispheres. These results provide direct evidence for an asymmetrical processing of delayed visual feedback that is associated with both perceptual and motor biases that are similar to those observed in hemispatial neglect syndrome.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6127623 | PMC |
http://dx.doi.org/10.3389/fnhum.2018.00335 | DOI Listing |
GROUP ACM SIGCHI Int Conf Support Group Work
January 2025
College of Information Sciences and Technology, The Pennsylvania State University, University Park, Pennsylvania, USA.
Assistive technologies for people with visual impairments (PVI) have made significant advancements, particularly with the integration of artificial intelligence (AI) and real-time sensor technologies. However, current solutions often require PVI to switch between multiple apps and tools for tasks like image recognition, navigation, and obstacle detection, which can hinder a seamless and efficient user experience. In this paper, we present NaviGPT, a high-fidelity prototype that integrates LiDAR-based obstacle detection, vibration feedback, and large language model (LLM) responses to provide a comprehensive and real-time navigation aid for PVI.
View Article and Find Full Text PDFJMIR Form Res
January 2025
Department of Epidemiology and Biostatistics, School of Population Health, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
Background: Public health programs and policies can positively influence food environments. In 2016, a voluntary National Healthy Food and Drink Policy was released in New Zealand to improve the healthiness of food and drinks for hospital staff and visitors. However, no resources were developed to support policy implementation.
View Article and Find Full Text PDFJMIR Form Res
January 2025
School of Occupational Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan.
Background: Origami is a popular activity among preschool children and can be used by therapists as an evaluation tool to assess children's development in clinical settings. It is easy to implement, appealing to children, and time-efficient, requiring only simple materials-pieces of paper. Furthermore, the products of origami may reflect children's ages and their visual-motor integration (VMI) development.
View Article and Find Full Text PDFBackground: The goal of this study was to examine the effects of spinal cord stimulation (SCS) on muscle activity during walking after lower-limb amputation. Amputation results in a loss of sensory feedback and alterations in gait biomechanics, including co-contractions of antagonist muscles about the knee and ankle, and reduced pelvic obliquity range-of-motion and pelvic drop. SCS can restore sensation in the missing limb, but its effects on muscle activation and gait biomechanics have not been studied in people with lower-limb amputation.
View Article and Find Full Text PDFJBI Evid Implement
January 2025
Health Sciences Research Unit: Nursing (UICISA: E), Nursing School of Coimbra (ESEnfC), Coimbra, Portugal.
Introduction: People with stroke are at risk of poor oral hygiene caused by neurological deficits, which can be motor, sensory, or cognitive. Good oral hygiene has been shown to reduce adverse events and improve the patient's quality of life. Although nurses recognize the benefits of oral hygiene, evidence shows that this area of care is frequently overlooked.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!