Purpose: This study aimed to analyze expression profiles of long noncoding RNAs (lncRNAs) in lung adenocarcinoma.
Methods: lncRNA microarray technology was employed to detect lncRNA profiles of 3 pairs of lung adenocarcinoma tissues and adjacent tissues.
Results: We found 134 upregulated lncRNAs and 460 downregulated lncRNAs in lung adenocarcinoma tissues compared to adjacent tissues. Among them, LINC00152, LINC00691, and LINC00578 showed the most significant changes of upregulation, while LINC00668, LINC00710, and LINC00607 showed the most significant changes of downregulation. Fluorescent quantitative polymerase chain reaction (PCR) analysis of tissue samples from an additional 90 patients with lung adenocarcinoma showed significantly increased levels of LINC00152, LINC00691, and LINC00578 and decreased levels of LINC00668, LINC00710, and LINC00607 in lung adenocarcinoma tissues. In addition, LINC00578 was closely associated with the existence of metastasis of lung adenocarcinoma, but the other 5 lncRNAs showed no significant correlation with clinicopathologic characteristics such as age, gender, tumor stage, and the existence of metastasis. Further follow-up study showed that LINC00578 expression was closely associated with the survival of patients with lung adenocarcinoma.
Conclusion: We revealed the expression profiles of lncRNAs in lung adenocarcinoma and identified LINC00578 as a promising biomarker and therapeutic target for lung adenocarcinoma.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6134945 | PMC |
http://dx.doi.org/10.2147/OTT.S167633 | DOI Listing |
Discov Oncol
January 2025
Department of Geriatric Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China.
Aim: This study aimed to identify the genes associated with the development of lung adenocarcinoma (LUAD) and potential therapeutic targets.
Methods: Differentially expressed genes (DEGs) were identified by self-transcriptome sequencing of tumor tissues and paracancerous tissues resected during surgery and combined with The Cancer Genome Atlas (TCGA) data to screen for the genes associated with LUAD prognosis. The expression was validated at mRNA and protein levels, and the gene knockdown was used to examine the impact and underlying mechanisms on lung cancer cells.
Stat Med
February 2025
Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, USA.
With the increasing maturity of genetic profiling, an essential and routine task in cancer research is to model disease outcomes/phenotypes using genetic variables. Many methods have been successfully developed. However, oftentimes, empirical performance is unsatisfactory because of a "lack of information.
View Article and Find Full Text PDFCureus
December 2024
Department of Cancer Biochemistry and Radiobiology, Institutul Oncologic Prof. Dr. Alexandru Trestioreanu, Bucharest, ROU.
Malignant pleural effusion (MPE) is a common feature in patients with advanced or metastatic malignancies. While significant progress has been made in understanding the biology of pleural effusions, further research is needed to uncover the subsequent behavior of tumor cells following their invasion into the pleural space. This report utilizes flow cytometry to analyze DNA content abnormalities (aneuploidy) and cell cycle status, shedding light on the tumor cell populations present in MPE samples from a patient with lung adenocarcinoma during treatment.
View Article and Find Full Text PDFFront Oncol
January 2025
Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
Background: The carcinogenesis mechanism of early-stage lung cancer (ESLC) remains unclear. Microbial dysbiosis is closely related to tumor development. This study aimed to analyze the relationship between microbiota dysbiosis in ESLC.
View Article and Find Full Text PDFCancer Manag Res
January 2025
Department of Radiotherapy, Liaocheng Hospital Affiliated to Shandong First Medical University (Liaocheng People's Hospital), Liaocheng, Shandong, People's Republic of China.
Introduction: Superior orbital fissure syndrome (SOFS) is a rare condition that involves damage to multiple structures within the superior orbital fissure, often caused by trauma, inflammation, or tumors. Lung adenocarcinoma, known for its propensity to metastasize, can lead to orbital metastases, which can manifest as SOFS. This case underscores the diagnostic and therapeutic challenges associated with such rare metastatic presentations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!