In the field of metabolomics, CE-MS is now recognized as a strong analytical technique for the analysis of (highly) polar and charged metabolites in a wide range of biological samples. Over the past few years, significant attention has been paid to the design and improvement of CE-MS approaches for (large-scale) metabolic profiling studies and for establishing protocols in order to further expand the role of CE-MS in metabolomics. In this paper, which is a follow-up of a previous review paper covering the years 2014-2016 (Electrophoresis 2017, 38, 190-202), main advances in CE-MS approaches for metabolomics studies are outlined covering the literature from July 2016 to June 2018. Aspects like developments in interfacing designs and data analysis tools for improving the performance of CE-MS for metabolomics are discussed. Representative examples highlight the utility of CE-MS in the fields of biomedical, clinical, microbial, and plant metabolomics. A complete overview of recent CE-MS-based metabolomics studies is given in a table, which provides information on sample type and pretreatment, capillary coatings and MS detection mode. Finally, some general conclusions and perspectives are given.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6586046 | PMC |
http://dx.doi.org/10.1002/elps.201800323 | DOI Listing |
Anal Chem
December 2024
Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada.
Mass spectrometry (MS)-based metabolomics often rely on separation techniques when analyzing complex biological specimens to improve method resolution, metabolome coverage, quantitative performance, and/or unknown identification. However, low sample throughput and complicated data preprocessing procedures remain major barriers to affordable metabolomic studies that are scalable to large populations. Herein, we introduce PeakMeister as a new software tool in the R statistical environment to enable standardized processing of serum metabolomic data acquired by multisegment injection-capillary electrophoresis-mass spectrometry (MSI-CE-MS), a high-throughput separation platform (<4 min/sample) which takes advantage of a serial injection format of 13 samples within a single analytical run.
View Article and Find Full Text PDFMetabolites
November 2024
Department of Biomedical Engineering, Graduate School of Medicine, Science and Technology, Shinshu University, 4-7-1 Wakasato, Nagano City 380-8553, Nagano Prefecture, Japan.
Methods Mol Biol
October 2024
Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain.
J Am Soc Mass Spectrom
September 2024
Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.
Capillary electrophoresis coupled with tandem mass spectrometry (CE-MS/MS) offers advantages in peak capacity and sensitivity for metabolic profiling owing to the electroosmotic flow-based separation. However, the utilization of data-independent MS/MS acquisition (DIA) is restricted due to the absence of an optimal procedure for analytical chemistry and its related informatics framework. We assessed the mass spectral quality using two DIA techniques, namely, all-ion fragmentation (AIF) and variable DIA (vDIA), to isolate 60-800 Da precursor ions with respect to annotation rates.
View Article and Find Full Text PDFAnticancer Res
August 2024
Department of Gastroenterological Surgery, Kagawa University, Kagawa, Japan.
Background/aim: F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) is reportedly associated with the malignant potential of cancer. This study aimed to evaluate the association between FDG accumulation and tumor metabolism in pancreatic ductal adenocarcinoma (PDAC).
Patients And Methods: A prognostic analysis of data from 131 patients with PDAC who underwent FDG-PET/CT before curative-intent pancreatic surgery was performed.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!