TIGIT: a novel immunotherapy target moving from bench to bedside.

Cancer Immunol Immunother

Oncology Division, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah School of Medicine, 2000 Circle of Hope, Suite 2100, Salt Lake City, UT, 84112, USA.

Published: November 2018

AI Article Synopsis

  • Treatment strategies for advanced solid tumors have evolved from surgery, chemotherapy, and targeted therapies to include immunotherapy, though many patients still do not respond.
  • "Cold tumors" lack effective immune cells and have an immunosuppressive environment, making them less likely to benefit from immunotherapy.
  • TIGIT is an inhibitory checkpoint involved in immune cell activation and shows promise for enhancing tumor immunotherapy, particularly when combined with anti-PD-1/PD-L1 treatments in ongoing clinical trials.

Article Abstract

Treatment strategies for patients with advanced solid tumors have traditionally been based on three different paradigms: surgery, cytotoxics (chemotherapy or radiation therapy) and targeted therapies. Immunotherapy has emerged as a novel treatment paradigm in our armamentarium. Unfortunately, most patients still do not benefit from immunotherapy. These patients often have "cold tumors" characterized by a paucity of effector T cells in the tumor microenvironment, low mutational load, low neoantigen burden and often an immunosuppressive tumor microenvironment. TIGIT is an immunoreceptor inhibitory checkpoint that has been implicated in tumor immunosurveillance. Expression of TIGIT has been demonstrated in both NK cells and T cells and plays a role in their activation and maturation. TIGIT competes with immunoactivator receptor CD226 (DNAM-1) for the same set of ligands: CD155 (PVR or poliovirus receptor) and CD112 (Nectin-2 or PVRL2). TIGIT's role in tumor immunosurveillance is analogous to the PD-1/PD-L1 axis in tumor immunosuppression. Both TIGIT and PD-1 are upregulated in a variety of different cancers. Anti-TIGIT antibodies have demonstrated synergy with anti-PD-1/PD-L1 antibodies in pre-clinical models. Currently, there are multiple first-in-man phase I trials hoping to exploit this new pathway and improve response rates with existing immunotherapies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11028339PMC
http://dx.doi.org/10.1007/s00262-018-2246-5DOI Listing

Publication Analysis

Top Keywords

tumor microenvironment
8
tumor immunosurveillance
8
tigit
5
tumor
5
tigit novel
4
novel immunotherapy
4
immunotherapy target
4
target moving
4
moving bench
4
bench bedside
4

Similar Publications

Although CCL17 has been reported to exert a vital role in many cancers, the related studies in the thyroid carcinoma have never reported. As a chemokine, CCL17 plays a positive role by promoting the infiltration of immune cells into the tumor microenviroment (TME) to influence tumor invasion and metastasis. Therefore, this study is aimed to investigate the association of CCL17 level with potential prognostic value on tumor immunity in the thyroid carcinoma (THCA) based on the bioinformatics analysis.

View Article and Find Full Text PDF

Aging-induced immune microenvironment remodeling fosters melanoma in male mice via γδ17-Neutrophil-CD8 axis.

Nat Commun

December 2024

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.

Aging is associated with increased tumor metastasis and poor prognosis. However, how an aging immune system contributes to the process is unclear. Here, single-cell RNA sequencing reveals that in male mice, aging shifts the lung immune microenvironment towards a premetastatic niche, characterized by an increased proportion of IL-17-expressing γδT (γδ17) and neutrophils.

View Article and Find Full Text PDF

Turning attention to tumor-host interface and focus on the peritumoral heterogeneity of glioblastoma.

Nat Commun

December 2024

Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital,Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.

Approximately 90% of glioblastoma recurrences occur in the peritumoral brain zone (PBZ), while the spatial heterogeneity of the PBZ is not well studied. In this study, two PBZ tissues and one tumor tissue sample are obtained from each patient via preoperative imaging. We assess the microenvironment and the characteristics of infiltrating immune/tumor cells using various techniques.

View Article and Find Full Text PDF

Bone Marrow Endothelial Progenitor Cells remodelling facilitates normal hematopoiesis during Acute Myeloid Leukemia Complete Remission.

Nat Commun

December 2024

Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China.

Although acute myeloid leukemia (AML) affects hematopoietic stem cell (HSC)-supportive microenvironment, it is largely unknown whether leukemia-modified bone marrow (BM) microenvironment can be remodeled to support normal hematopoiesis after complete remission (CR). As a key element of BM microenvironment, endothelial progenitor cells (EPCs) provide a feasible way to investigate BM microenvironment remodeling. Here, we find reduced and dysfunctional BM EPCs in AML patients, characterized by impaired angiogenesis and high ROS levels, could be partially remodeled after CR and improved by N-acetyl-L-cysteine (NAC).

View Article and Find Full Text PDF

Hodgkin Reed-Sternberg (HRS) cells of classic Hodgkin lymphoma (cHL), like many solid tumors, elicit ineffective immune responses. However, patients with cHL are highly responsive to PD-1 blockade, which largely depends on HRS cell-specific retention of MHC class II and implicates CD4 T cells and additional MHC class I-independent immune effectors. Here, we utilize single-cell RNA sequencing and spatial analysis to define shared circulating and microenvironmental features of the immune response to PD-1 blockade in cHL.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!