Soaring birds often rely on ascending thermal plumes (thermals) in the atmosphere as they search for prey or migrate across large distances. The landscape of convective currents is rugged and shifts on timescales of a few minutes as thermals constantly form, disintegrate or are transported away by the wind. How soaring birds find and navigate thermals within this complex landscape is unknown. Reinforcement learning provides an appropriate framework in which to identify an effective navigational strategy as a sequence of decisions made in response to environmental cues. Here we use reinforcement learning to train a glider in the field to navigate atmospheric thermals autonomously. We equipped a glider of two-metre wingspan with a flight controller that precisely controlled the bank angle and pitch, modulating these at intervals with the aim of gaining as much lift as possible. A navigational strategy was determined solely from the glider's pooled experiences, collected over several days in the field. The strategy relies on on-board methods to accurately estimate the local vertical wind accelerations and the roll-wise torques on the glider, which serve as navigational cues. We establish the validity of our learned flight policy through field experiments, numerical simulations and estimates of the noise in measurements caused by atmospheric turbulence. Our results highlight the role of vertical wind accelerations and roll-wise torques as effective mechanosensory cues for soaring birds and provide a navigational strategy that is directly applicable to the development of autonomous soaring vehicles.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-018-0533-0DOI Listing

Publication Analysis

Top Keywords

reinforcement learning
12
soaring birds
12
navigational strategy
12
vertical wind
8
wind accelerations
8
accelerations roll-wise
8
roll-wise torques
8
glider
4
glider soaring
4
soaring reinforcement
4

Similar Publications

Regulation of Dopamine Release by Tonic Activity Patterns in the Striatal Brain Slice.

ACS Chem Neurosci

January 2025

Departments of Psychiatry and Neurology, Division of Molecular Therapeutics, New York State Psychiatric Institute, Columbia University Medical Center, New York, New York 10032, United States.

Voluntary movement, motivation, and reinforcement learning depend on the activity of ventral midbrain neurons, which extend axons to release dopamine (DA) in the striatum. These neurons exhibit two patterns of action potential activity: low-frequency tonic activity that is intrinsically generated and superimposed high-frequency phasic bursts that are driven by synaptic inputs. acute striatal brain preparations are widely employed to study the regulation of evoked DA release but exhibit very different DA release kinetics than recordings.

View Article and Find Full Text PDF

Background: Postpartum is a critical period to interrupt weight gain across the lifespan, decrease weight-related risk in future pregnancies, promote healthy behaviors that are often adopted during pregnancy, and improve long-term health. Because the postpartum period is marked by unique challenges to a person's ability to prioritize healthy behaviors, a multi-level/domain approach to intervention beyond the individual-level factors of diet and activity is needed.

Objectives: The purpose of this study was to understand postpartum people's perceptions about the relationship between their social networks and support, and their health behaviors and weight.

View Article and Find Full Text PDF

Analysis of Autonomous Penetration Testing Through Reinforcement Learning and Recommender Systems.

Sensors (Basel)

January 2025

Group of Analysis, Security and Systems (GASS), Department of Software Engineering and Artificial Intelligence (DISIA), Faculty of Computer Science and Engineering, Office 431, Universidad Complutense de Madrid (UCM), Calle Profesor José García Santesmases, 9, Ciudad Universitaria, 28040 Madrid, Spain.

Conducting penetration testing (pentesting) in cybersecurity is a crucial turning point for identifying vulnerabilities within the framework of Information Technology (IT), where real malicious offensive behavior is simulated to identify potential weaknesses and strengthen preventive controls. Given the complexity of the tests, time constraints, and the specialized level of expertise required for pentesting, analysis and exploitation tools are commonly used. Although useful, these tools often introduce uncertainty in findings, resulting in high rates of false positives.

View Article and Find Full Text PDF

Autonomous driving has demonstrated impressive driving capabilities, with behavior decision-making playing a crucial role as a bridge between perception and control. Imitation Learning (IL) and Reinforcement Learning (RL) have introduced innovative approaches to behavior decision-making in autonomous driving, but challenges remain. On one hand, RL's policy networks often lack sufficient reasoning ability to make optimal decisions in highly complex and stochastic environments.

View Article and Find Full Text PDF

Task Offloading with LLM-Enhanced Multi-Agent Reinforcement Learning in UAV-Assisted Edge Computing.

Sensors (Basel)

December 2024

School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, China.

Unmanned aerial vehicles (UAVs) furnished with computational servers enable user equipment (UE) to offload complex computational tasks, thereby addressing the limitations of edge computing in remote or resource-constrained environments. The application of value decomposition algorithms for UAV trajectory planning has drawn considerable research attention. However, existing value decomposition algorithms commonly encounter obstacles in effectively associating local observations with the global state of UAV clusters, which hinders their task-solving capabilities and gives rise to reduced task completion rates and prolonged convergence times.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!