Vascular risk at younger ages most strongly associates with current and future brain volume.

Neurology

From the Melbourne Dementia Research Centre (M.P.P.), the Florey Institute for Neuroscience and Mental Health, the University of Melbourne, Australia; Department of Neurology (M.P.P., J.J.H., C.L.S., H.A., S.S., A.S.B), Boston University School of Medicine; Framingham Heart Study (M.P.P., K.D-.P., J.J.H., H.A., S.S., A.S.B., C.D.), MA; Centre for Human Psychopharmacology (M.P.P.), Swinburne University of Technology, Australia; Department of Biostatistics (K.D.-P., J.J.H., A.S.B.), Boston University School of Public Health, MA; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (C.L.S., S.S., C.D.), University of Texas Health Sciences Center, San Antonio; and Department of Neurology, School of Medicine & Imaging of Dementia and Aging Laboratory, Center for Neuroscience, University of California Davis, Sacramento.

Published: October 2018

Objective: Given the potential therapeutic effect of vascular disease control timing to reduce dementia risk, we investigated the age-related influences of vascular risk factor burden on brain structure throughout the lifespan.

Methods: We studied participants from the community-based prospective Framingham Heart Study. Overall vascular risk factor burden was calculated according to the Framingham Stroke Risk Profile, a validated algorithm that predicts stroke risk. Brain volume was estimated by MRI. We used cross-sectional data to examine how the strength of association between vascular risk factor burden and brain volume changed across each age decade from age 45-54 years through to 85-94 years (N = 2,887). Second, we leveraged up to 40 years of longitudinal data to determine how the strength of association between vascular risk factor burden and brain volume changed when vascular risk factors were examined at progressively earlier ages (N = 7,868).

Results: In both cross-sectional and longitudinal analyses, higher vascular risk factor burden was associated with lower brain volume across each age decade. In the cross-sectional analysis, the strength of this association decreased with each decade of advancing age ( for trend < 0.0001). In longitudinal analysis, the strength of association between vascular risk factor burden and brain volume was stronger when vascular risk factors were measured at younger ages. For example, vascular risk factor burden was most strongly associated with lower brain volume in later life when vascular risk factors were measured at age 45 years.

Conclusion: Vascular risk factors at younger ages appear to have detrimental effects on current and future brain volume.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6202941PMC
http://dx.doi.org/10.1212/WNL.0000000000006360DOI Listing

Publication Analysis

Top Keywords

vascular risk
48
brain volume
32
risk factor
28
factor burden
28
burden brain
16
strength association
16
risk factors
16
risk
14
vascular
13
younger ages
12

Similar Publications

Hypertension, commonly known as high blood pressure, is a significant health issue that increases the risk of cardiovascular diseases, stroke, and renal failure. This condition broadly encompasses both primary and secondary forms. Despite extensive research, the underlying mechanisms of systemic arterial hypertension-particularly primary hypertension, which has no identifiable cause and is affected by genetic and lifestyle agents-remain complex and not fully understood.

View Article and Find Full Text PDF

Background: Nucleolar protein 7 (NOL7), a specific protein found in the nucleolus, is crucial for maintaining cell division and proliferation. While the involvement of NOL7 in influencing the unfavorable prognosis of metastatic melanoma has been reported, its significance in predicting the prognosis of patients with Hepatocellular Carcinoma (HCC) remains unclear.

Methods: Aberrant expression of NOL7 in HCC and its prognostic value were evaluated using multiple databases, including TCGA, GTEx, Xiantao Academic, HCCDB, UALCAN, TISCH, and STRING.

View Article and Find Full Text PDF

Liver masses are common in children, however primary malignant neoplasms are rare, representing only 1% of all pediatric cancers. Hepatocellular neoplasms are the most common primary liver malignancies and hepatoblastoma (HB) is the most frequently diagnosed. The incidence of HB, which is increasing, is approximately of 2 cases per million in the United States, followed by hepatocellular carcinoma (HCC).

View Article and Find Full Text PDF

In Situ Conversion of Atherosclerotic Plaques' Iron into Nanotheranostics.

J Am Chem Soc

January 2025

Materdicine Lab, School of Life Sciences, Shanghai University, 200444 Shanghai, P. R. China.

The presence of a substantial necrotic core in atherosclerotic plaques markedly heightens the risk of rupture, a consequence of elevated iron levels that exacerbate oxidative stress and lipid peroxidation, thereby sustaining a detrimental cycle of ferroptosis and inflammation. Concurrently targeting both ferroptosis and inflammation is crucial for the effective treatment of vulnerable plaques. In this study, we introduce gallium hexacyanoferrate nanoabsorption catalysts (GaHCF NACs) designed to disrupt this pathological cycle.

View Article and Find Full Text PDF

Endovascular versus Best Medical Treatment for Acute Carotid Occlusion BelOw Circle of Willis (ACOBOW): The ACOBOW Study.

Radiology

January 2025

From the Dept of Diagnostic and Interventional Neuroradiology, Univ Medical Ctr Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany (L.M., G.B., P.S., J.F., C.P.S.); Dept of Diagnostic and Interventional Neuroradiology, Hosp Bremen-Mitte, Bremen, Germany (M.A., P.P.); Interventional Neuroradiology Section, Dept of Radiology, Donostia Univ Hosp, Donostia-San Sebastián, Spain (Á.L., J.Á.L.); Clinic for Radiology, Section for Interventional Radiology, Univ of Münster and Univ Hosp Münster, Münster, Germany (W.S., H.K., C.P.S.); Dept of Neuroradiology, Westpfalz-Klinikum, Kaiserslautern, Germany (W.N.); Dept of Neuroradiology, Otto-von-Guericke-Universitätsklinikum Magdeburg, Magdeburg, Germany (D.B., M.T.); Inst for Diagnostic and Interventional Radiology and Neuroradiology, Univ Hosp Essen, Essen, Germany (H.S., C.D.); Dept of Neuroradiology, Univ of Cologne, Cologne, Germany (C.K., C.Z.); Dept of Neuroradiology, Univ Hosp Aachen, Aachen, Germany (C.W., M. Möhlenbruch); Dept of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, School of Medicine, Technical Univ Munich, Munich, Germany (M.R.H.P., C.M.); Inst of Neuroradiology, Univ Hosps, LMU Munich, Munich, Germany (H.Z.); Dept of Diagnostic and Interventional Neuroradiology, Univ Medical Ctr Goettingen, Goettingen, Germany (M. Ernst, A.J.); Interventional Neuroradiology, Dept of Radiology, Hosp Clínico San Carlos, Madrid, Spain (M.M.G., C.P.G.); Dept of Neuroradiology, Hosp Universitario La Paz, Madrid, Spain (P.N., A.F.P.); Div of Neurology, Dept of Medicine (L.Y., B.T.), and Div of Interventional Radiology, Dept of Diagnostic Imaging (A.G.), National Univ Health System, Singapore; Yong Loo Lin School of Medicine, National Univ of Singapore, Singapore (L.Y., B.T., A.G.); Inst of Neuroradiology, Charité Universitätsmedizin Berlin, Berlin, Germany (E.S., M. Miszczuk); Dept of Neuroradiology, Clinic and Policlinic of Radiology, Univ Hosp Halle/Saale, Halle, Germany (S.S.); Dept of Radiology and Neuroradiology, Stadtspital Zürich, Zürich, Switzerland (P.S.); Dept of Diagnostic and Interventional Neuroradiology, Univ Hosp Basel, Basel, Switzerland (P.S., M.P.); Depts of Interventional Neuroradiology (J.Z.P.) and Neurology (G.P.), Hosp Clínico Universitario Virgen de la Arrixaca, Murcia, Spain; Dept of Neuroradiology, Karolinska Univ Hosp and Dept of Clinical Neuroscience, Karolinska Inst, Stockholm, Sweden (F.A., T.A.); Dept of Medical Imaging, AZ Groeninge, Kortrijk, Belgium (T.A.); Dept of Radiology, Comenius Univ's Jessenius Faculty of Medicine and Univ Hosp, Martin, Slovakia (K.Z.); Dept of Radiology, Aretaieion Univ Hosp, National and Kapodistrian Univ of Athens, Athens, Greece (P.P.); Dept of Neuroradiology, Univ Hosp Marburg, Marburg, Germany (A.K.); Dept of Neuroradiology, Univ Hosp of Bonn, Bonn, Germany (F.D.); and Dept of Neuroradiology, Alfried Krupp Krankenhaus, Essen, Germany (M. Elsharkawy).

Background Symptomatic acute occlusions of the internal carotid artery (ICA) below the circle of Willis can cause a variety of stroke symptoms, even if the major intracranial cerebral arteries remain patent; however, outcome and safety data are limited. Purpose To compare treatment effects and procedural safety of endovascular treatment (EVT) and best medical treatment (BMT) in patients with symptomatic acute occlusions of the ICA below the circle of Willis. Materials and Methods This retrospective, multicenter cohort study from 22 comprehensive stroke centers in Europe and Asia includes patients treated between January 1, 2008, and December 31, 2022.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!