Sindbis virus (SINV) is a representative member of the genus in the Togaviridae family. The hallmark of SINV replication in vertebrate cells is a rapid development of the cytopathic effect (CPE), which usually occurs within 24 h postinfection. Mechanistic understanding of CPE might lead to development of new prophylactic vaccines and therapeutic means against alphavirus infections. However, development of noncytopathic SINV variants and those of other Old World alphaviruses was always highly inefficient and usually resulted in selection of mutants demonstrating poor replication of the viral genome and transcription of subgenomic RNA. This likely caused a nonspecific negative effect on the rates of CPE development. The results of this study demonstrate that CPE induced by SINV and likely by other Old World alphaviruses is a multicomponent process, in which transcriptional and translational shutoffs are the key contributors. Inhibition of cellular transcription and translation is determined by SINV nsP2 and nsP3 proteins, respectively. Defined mutations in the nsP2-specific peptide between amino acids (aa) 674 and 688 prevent virus-induced degradation of the catalytic subunit of cellular-DNA-dependent RNA polymerase II and transcription inhibition and make SINV a strong type I interferon (IFN) inducer without affecting its replication rates. Mutations in the nsP3 macrodomain, which were demonstrated to inhibit its mono-ADP-ribosylhydrolase activity, downregulate the second component of CPE development, inhibition of cellular translation, and also have no effect on virus replication rates. Only the combination of nsP2- and nsP3-specific mutations in the SINV genome has a dramatic negative effect on the ability of virus to induce CPE. Alphaviruses are a group of important human and animal pathogens with worldwide distribution. Their characteristic feature is a highly cytopathic phenotype in cells of vertebrate origin. The molecular mechanism of CPE remains poorly understood. In this study, by using Sindbis virus (SINV) as a model of the Old World alphaviruses, we demonstrated that SINV-specific CPE is redundantly determined by viral nsP2 and nsP3 proteins. NsP2 induces the global transcriptional shutoff, and this nuclear function can be abolished by the mutations of the small, surface-exposed peptide in the nsP2 protease domain. NsP3, in turn, determines the development of translational shutoff, and this activity depends on nsP3 macrodomain-associated mono-ADP-ribosylhydrolase activity. A combination of defined mutations in nsP2 and nsP3, which abolish SINV-induced transcription and translation inhibition, in the same viral genome does not affect SINV replication rates but makes it noncytopathic and a potent inducer of type I interferon.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6232463PMC
http://dx.doi.org/10.1128/JVI.01388-18DOI Listing

Publication Analysis

Top Keywords

sindbis virus
12
nsp2 nsp3
12
replication rates
12
sinv
9
transcriptional shutoff
8
translational shutoff
8
virus sinv
8
sinv replication
8
cpe
8
viral genome
8

Similar Publications

Establishment of a New Real-Time Molecular Assay for the Detection of Babanki Virus in Africa.

Viruses

November 2024

Virology Department, Institut Pasteur de Dakar, 36 Avenue Pasteur, Dakar 220, Senegal.

Babanki virus is a subtype of the Sindbis virus, a widespread arthropod-borne alphavirus circulating in Eurasia, Africa, and Oceania. Characterized by rashes and arthritis, clinical infections due to Sindbis were mainly reported in Africa, Australia, Asia, and Europe. However, its sub-type, Babanki virus, was reported in Northern Europe and Africa, where its epidemiology potential remains poorly understood.

View Article and Find Full Text PDF

Sindbis virus (SINV), is an of the family . This zoonotic arbovirus is transmitted by mosquitoes, primarily from the genus, with bird species acting as amplifying vertebrate hosts. Occasionally it can also affect humans that are accidental hosts.

View Article and Find Full Text PDF

Cellular takeover: How new world alphaviruses impact host organelle function.

Virology

December 2024

Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA; Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA. Electronic address:

Alphavirus replication is dependent on host cell organelles to facilitate multiple steps of the viral life cycle. New world alphaviruses (NWA) consisting of eastern, western and Venezuelan equine encephalitis viruses are a subgroup of alphaviruses associated with central nervous system disease. Despite differing morbidity and mortality amongst these viruses, all are important human pathogens due to their transmission through viral aerosolization and mosquito transmission.

View Article and Find Full Text PDF

Overwintering of Usutu virus in mosquitoes, The Netherlands.

Parasit Vectors

December 2024

Laboratory of Entomology, Plant Sciences Group, Wageningen University, Wageningen, The Netherlands.

Analyses of mosquito-borne virus outbreaks have revealed the presence of similar virus strains over several years. However, it remains unclear how mosquito-borne viruses can persist over winter, when conditions are generally unfavorable for virus circulation. One potential route for virus persistence is via diapausing mosquitoes.

View Article and Find Full Text PDF

The genus Alphavirus harbors arboviruses of great concern, such as the Chikungunya virus and the equine encephalitis viruses. Transmission of pathogenic alphaviruses by mosquitoes could be influenced by insect-specific alphaviruses such as Eilat virus (EILV). However, insect-specific alphaviruses are rarely found in wild mosquitoes and only a few have been described in the literature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!