Increased aerobic glycolysis is a hallmark of cancer metabolism. How cancer cells coordinate glucose metabolism with extracellular glucose levels remains largely unknown. Here, we report that coactivator-associated arginine methyltransferase 1 (CARM1 or PRMT4) signals glucose availability to glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and suppresses glycolysis in liver cancer cells. CARM1 methylates GAPDH at arginine 234 (R234), inhibiting its catalytic activity. Glucose starvation leads to CARM1 upregulation, further inducing R234 hypermethylation and GAPDH inhibition. The re-expression of wild-type GAPDH, but not of its methylation-mimetic mutant, sustains glycolytic levels. CARM1 inhibition increases glycolytic flux and glycolysis. R234 methylation delays tumor cell proliferation in vitro and in vivo. Compared with normal tissues, R234 is hypomethylated in malignant clinical hepatocellular carcinoma samples. Notably, R234 methylation positively correlates with CARM1 expression in these liver cancer samples. Our findings thus reveal that CARM1-mediated GAPDH methylation is a key regulatory mechanism of glucose metabolism in liver cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.celrep.2018.08.066 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!