Background: Brassica napus (B. napus) encompasses diverse transcription factors (TFs), but thorough identification and characterization of TF families, as well as their transcriptional responsiveness to multifarious stresses are still not clear.
Results: Totally 2167 TFs belonging to five families were genome-widely identified in B. napus, including 518 BnAP2/EREBPs, 252 BnbZIPs, 721 BnMYBs, 398 BnNACs and 278 BnWRKYs, which contained some novel members in comparison with existing results. Sub-genome distributions of BnAP2/EREBPs and BnMYBs indicated that the two families might have suffered from duplication and divergence during evolution. Synteny analysis revealed strong co-linearity between B. napus and its two ancestors, although chromosomal rearrangements have occurred and 85 TFs were lost. About 7.6% and 9.4% TFs of the five families in B. napus were novel genes and conserved genes, which both showed preference on the C sub-genome. RNA-Seq revealed that more than 80% TFs were abiotic stress inducible and 315 crucial differentially expressed genes (DEGs) were screened out. Network analysis revealed that the 315 DEGs are highly co-expressed. The homologous gene network in A. thaliana revealed that a considerable amount of TFs could trigger the differential expression of targeted genes, resulting in a complex clustered network with clusters of genes responsible for targeted stress responsiveness.
Conclusions: We identified and characterized five TF families in B. napus. Some crucial members and regulatory networks involved in different abiotic stresses have been explored. The investigations deepen our understanding of TFs for stress tolerance in B. napus.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6146658 | PMC |
http://dx.doi.org/10.1186/s12870-018-1417-z | DOI Listing |
Invest Ophthalmol Vis Sci
January 2025
Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
Purpose: Inflammatory processes have been involved in diabetic retinopathy (DR). Interleukin (IL)-17A, a pro-inflammatory cytokine, is associated with DR occurrence and development. However, mechanisms underlying the IL-17A impact on DR need further investigations.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Department of Medical Physiology, Texas A&M University, Bryan, TX, USA.
The ability to add bioactivities, such as cell signaling or ligand recognition, to biomaterials has generated the potential to include multiple bioactivities into a single material. In some cases, it is desirable to localize these activities to different areas of the biomaterial, creating functional patterns. While photolithography and 3D printing have been effective techniques for patterning functions in many materials, patterning remains a challenge in materials composed of protein, in part due to how these materials are artificially assembled.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA.
ChIP-Seq is used to study DNA-protein interactions, unraveling chromatin states and gene regulatory properties of transcription factors. ChIP-Seq involves immunoprecipitation followed by sequencing using Next-Generation sequencing approaches. The ENCODE consortium provides extensive guidelines for ChIP-Seq analysis.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Department of Pharmacology, Yale School of Medicine, Yale University, New Haven, CT, USA.
Electrophoretic Mobility Shift Assay (EMSA) is a powerful technique for studying nucleic acid and protein interactions. This technique is based on the principle that nucleic acid-protein complex and nucleic acid migrate at different rates due to differences in size and charge. Nucleic acid and protein interactions are fundamental to various biological processes, such as gene regulation, replication, transcription, and recombination.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.
The HOX and PBX genes encode transcription factors that have key roles in development and cancer, both independently and as a heterodimer within a complex of proteins that recognizes specific sequences in DNA and can both activate and repress transcription of target genes. Due to functional redundancy amongst HOX proteins, knock down or knock out studies of individual genes often do not result in an altered phenotype. An alternative approach is to target the interaction between HOX and PBX proteins, which is dependent on a conserved hexapeptide region within HOX.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!