The and Toxin-Antitoxin Operons Participate in Oxidative Stress and Biofilm Formation.

Toxins (Basel)

Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain.

Published: September 2018

Type II (proteic) toxin-antitoxin systems (TAs) are widely distributed among bacteria and archaea. They are generally organized as operons integrated by two genes, the first encoding the antitoxin that binds to its cognate toxin to generate a harmless protein⁻protein complex. Under stress conditions, the unstable antitoxin is degraded by host proteases, releasing the toxin to achieve its toxic effect. In the Gram-positive pathogen we have characterized four TAs: , , , and , although the latter is missing in strain R6. We have assessed the role of the two and systems encoded by R6 by construction of isogenic strains lacking one or two of the operons, and by complementation assays. We have analyzed the phenotypes of the wild type and mutants in terms of cell growth, response to environmental stress, and ability to generate biofilms. Compared to the wild-type, the mutants exhibited lower resistance to oxidative stress. Further, strains deleted in and the double mutant lacking and exhibited a significant reduction in their ability for biofilm formation. Complementation assays showed that defective phenotypes were restored to wild type levels. We conclude that these two loci may play a relevant role in these aspects of the lifestyle and contribute to the bacterial colonization of new niches.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6162744PMC
http://dx.doi.org/10.3390/toxins10090378DOI Listing

Publication Analysis

Top Keywords

oxidative stress
8
biofilm formation
8
complementation assays
8
wild type
8
toxin-antitoxin operons
4
operons participate
4
participate oxidative
4
stress
4
stress biofilm
4
formation type
4

Similar Publications

Oxidative stress and neuronal apoptosis could be an important factor leading to post-hemorrhagic consequences after germinal matrix hemorrhage (GMH). Previously study have indicated that relaxin 2 receptor activation initiates anti-oxidative stress and anti-apoptosis in ischemia-reperfusion injury. However, whether relaxin 2 activation can attenuate oxidative stress and neuronal apoptosis after GMH remains unknown.

View Article and Find Full Text PDF

Background: This article aims to use high-throughput sequencing to identify miRNAs associated with ferroptosis in myocardial ischemia-reperfusion injury, select a target miRNA, and investigate its role in H9C2 cells hypoxia-reoxygenation injury.

Methods: SD rats and H9C2 cells were used as subjects. ELISA kits quantified MDA, SOD, GSH, LDH, and ferritin levels.

View Article and Find Full Text PDF

Deep learning reveals diverging effects of altitude on aging.

Geroscience

January 2025

Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.

Aging is influenced by a complex interplay of multifarious factors, including an individual's genetics, environment, and lifestyle. Notably, high altitude may impact aging and age-related diseases through exposures such as hypoxia and ultraviolet (UV) radiation. To investigate this, we mined risk exposure data (summary exposure value), disease burden data (disability-adjusted life years (DALYs)), and death rates and life expectancy from the Global Health Data Exchange (GHDx) and National Data Management Center for Health of Ethiopia for each subnational region of Ethiopia, a country with considerable differences in the living altitude.

View Article and Find Full Text PDF

Bioinformatic analysis of ferroptosis related biomarkers and potential therapeutic targets in vitiligo.

Sci Rep

January 2025

Department of Dermatology, Suining Central Hospital, No. 127, Western Desheng Road, Suining, 629000, People's Republic of China.

Vitiligo is a complex autoimmune skin disorder characterized by depigmentation and immune dysregulation. To elucidate the role of ferroptosis-related genes (FRGs) in vitiligo, we conducted a comprehensive analysis of gene expression data from the GSE53146 and GSE65127 datasets obtained from the GEO database. We identified 31 differentially expressed FRGs (DE-FRGs), with 21 genes upregulated and 10 downregulated.

View Article and Find Full Text PDF

The transcription factor p53 is exquisitely sensitive and selective to a broad variety of cellular environments. Several studies have reported that oxidative stress weakens the p53-DNA binding affinity for certain promoters depending on the oxidation mechanism. Despite this body of work, the precise mechanisms by which the physiologically relevant DNA-p53 tetramer complex senses cellular stresses caused by HO are still unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!