Precision Medicine for Primary Central Nervous System Tumors: Are We There Yet?

Am Soc Clin Oncol Educ Book

From the Massachusetts General Hospital, Harvard Medical School, Boston, MA; Departments of Neurosurgery, Neurology, and Internal Medicine (Oncology), Huntsman Cancer Institute, University of Utah, Salt Lake City, UT; Department of Neurology, The Brain Tumor Center at Erasmus MC Cancer Institute, Rotterdam, Netherlands; Division of Neuro-Oncology, Stephen E. and Catherine Pappas Center for Neuro-Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA.

Published: May 2018

AI Article Synopsis

  • Recent technological advances have significantly improved our understanding of the genetic factors and molecular traits of various brain tumors.
  • These findings are leading to major changes in how these tumors are treated, potentially improving patient outcomes.
  • The text reviews actionable mutations found in gliomas, meningiomas, and craniopharyngiomas, discussing their diagnostic and treatment implications, along with current research trials.

Article Abstract

In recent years, technologic advances have increased tremendously our understanding of the molecular characteristics and genetic drivers of a variety of brain tumors. These discoveries have led to paradigm shifts in the treatment of these tumor entities and may therefore have a considerable impact on the outcome of affected patients in the near future. Here, we provide a broad overview of recently discovered clinically actionable mutations that have been identified in three different primary brain tumors: gliomas, meningiomas, and craniopharyngiomas. We furthermore highlight the diagnostic and therapeutic implications of these findings and summarize recently published and ongoing trials.

Download full-text PDF

Source
http://dx.doi.org/10.1200/EDBK_199247DOI Listing

Publication Analysis

Top Keywords

brain tumors
8
precision medicine
4
medicine primary
4
primary central
4
central nervous
4
nervous system
4
system tumors
4
tumors yet?
4
yet? years
4
years technologic
4

Similar Publications

Minimally invasive parafascicular surgery (MIPS) with the use of tubular retractors achieve a safe resection in deep seated tumours. Diffusion changes noted on postoperative imaging; the significance and clinical correlation of this remains poorly understood. Single centre retrospective cohort study of neuro-oncology patients undergoing MIPS.

View Article and Find Full Text PDF

Progress report on multiple endocrine neoplasia type 1.

Fam Cancer

January 2025

Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.

Multiple endocrine neoplasia type 1 (MEN1) syndrome is an autosomal dominant disorder caused by a germline pathogenic variant in the MEN1 tumor suppressor gene. Patients with MEN1 have a high risk for primary hyperparathyroidism (PHPT) with a penetrance of nearly 100%, pituitary adenomas (PitAd) in 40% of patients, and neuroendocrine neoplasms (NEN) of the pancreas (40% of patients), duodenum, lung, and thymus. Increased MEN1-related mortality is mainly related to duodenal-pancreatic and thymic NEN.

View Article and Find Full Text PDF

Background: Resistance to temozolomide (TMZ) remains is an important cause of treatment failure in patients with glioblastoma multiforme (GBM). ADAR1, as a member of the ADAR family, plays an important role in cancer progression and chemotherapy resistance. However, the mechanism by which ADAR1 regulates GBM progression and TMZ resistance is still unclear.

View Article and Find Full Text PDF

Purpose: This study aimed to identify prognostic factors and develop a nomogram for survival in patients with brainstem ependymoma.

Methods: Data of 652 patients diagnosed with brainstem ependymoma extracted from the Surveillance, Epidemiology, and End Results (SEER) registry from 2000 to 2020 were analyzed. Univariate and multivariable Cox regression analyses were performed to examine factors influencing overall survival (OS).

View Article and Find Full Text PDF

Background: Glioblastoma (GBM) is a lethal brain tumor characterized by the glioma stem cell (GSC) niche. The V-ATPase proton pump has been described as a crucial factor in sustaining GSC viability and tumorigenicity. Here we studied how patients-derived GSCs rely on V-ATPase activity to sustain mitochondrial bioenergetics and cell growth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!