Multi-stage optimization of a deep model: A case study on ground motion modeling.

PLoS One

Department of Electrical and Computer Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida 32310-6046, United States of America.

Published: March 2019

In this study, a multi-stage optimization procedure is proposed to develop deep neural network models which results in a powerful deep learning pipeline called intelligent deep learning (iDeepLe). The proposed pipeline is then evaluated by a challenging real-world problem, the modeling of the spectral acceleration experienced by a particle during earthquakes. This approach has three main stages to optimize the deep model topology, the hyper-parameters, and its performance, respectively. This pipeline optimizes the deep model via adaptive learning rate optimization algorithms for both accuracy and complexity in multiple stages, while simultaneously solving the unknown parameters of the regression model. Among the seven adaptive learning rate optimization algorithms, Nadam optimization algorithm has shown the best performance results in the current study. The proposed approach is shown to be a suitable tool to generate solid models for this complex real-world system. The results also show that the parallel pipeline of iDeepLe has the capacity to handle big data problems as well.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6145533PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0203829PLOS

Publication Analysis

Top Keywords

deep model
12
multi-stage optimization
8
deep learning
8
model adaptive
8
adaptive learning
8
learning rate
8
rate optimization
8
optimization algorithms
8
deep
6
optimization deep
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!