Patients with hereditary sensory and autonomic neuropathy type III (HSAN III) exhibit marked ataxia, including gait disturbances. We recently showed that functional muscle spindle afferents in the leg, recorded via intraneural microelectrodes inserted into the peroneal nerve, are absent in HSAN III, although large-diameter cutaneous afferents are intact. Moreover, there is a tight correlation between loss of proprioceptive acuity at the knee and the severity of gait impairment. We tested the hypothesis that manual motor performance is also compromised in HSAN III, attributed to the predicted absence of muscle spindles in the intrinsic muscles of the hand. Manual performance in the Purdue pegboard task was assessed in 12 individuals with HSAN III and 11 age-matched healthy controls. The mean (±SD) pegboard score (number of pins inserted in 30 s) was 8.1 ± 1.9 and 8.6 ± 1.8 for the left and right hand, respectively, significantly lower than the scores for the controls (15.0 ± 1.3 and 16.0 ± 1.1; P < 0.0001). Performance was not improved after kinesiology tape was applied over the joints of the hand. In 5 patients we inserted a tungsten microelectrode into the ulnar nerve at the wrist. No spontaneous or stretch-evoked muscle afferent activity could be identified in any of the 11 fascicles supplying intrinsic muscles of the hand, whereas touch-evoked activity from low-threshold cutaneous mechanoreceptor afferents could readily be recorded from 4 cutaneous fascicles. We conclude that functional muscle spindles are absent in the short muscles of the hand and most likely absent in the long finger flexors and extensors, and that this largely accounts for the poor manual motor performance in HSAN III. NEW & NOTEWORTHY We describe the impaired manual motor performance in patients with hereditary sensory and autonomic neuropathy type III (Riley-Day syndrome), who exhibit congenital insensitivity to pain, poor proprioception, and marked gait ataxia. We show that functional muscle spindles are absent in the intrinsic muscles of the hand, which we argue contributes to their poor performance in a task involving the precision grip.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7199231PMC
http://dx.doi.org/10.1152/jn.00528.2018DOI Listing

Publication Analysis

Top Keywords

hsan iii
20
functional muscle
16
muscle spindles
16
muscles hand
16
manual motor
12
motor performance
12
intrinsic muscles
12
patients hereditary
8
hereditary sensory
8
sensory autonomic
8

Similar Publications

Motor neuron diseases are not exclusively motor; the SSR paradigm.

Amyotroph Lateral Scler Frontotemporal Degener

January 2025

2nd Second Department of Neurology, National and Kapodistrian University of Athens, School of Medicine, Attikon University Hospital, Athens, Greece.

Motor Neuron Diseases (MNDs), familial and sporadic, are progressive neurodegenerative disorders that, for an extended period in the past, were considered purely motor disorders. During the course of the disease, however, some patients exhibit concomitant non-motor signs; thus, MNDs are currently perceived as multisystem disorders. Assessment of non-motor symptoms is usually performed clinically, although laboratory tests can also be routinely used to objectively evaluate these symptoms.

View Article and Find Full Text PDF

: Amyloidosis is a disorder characterized by the abnormal folding of proteins, forming insoluble fibrils that accumulate in tissues and organs. This accumulation disrupts normal tissue architecture and organ function, often with serious consequences, including death if left untreated. Light-chain amyloidosis (AL) and hereditary transthyretin-type amyloidosis (hATTR) are two of the most common types.

View Article and Find Full Text PDF

Correction of aberrant splicing of ELP1 pre-mRNA by kinetin derivatives - A structure activity relationship study.

Eur J Med Chem

February 2025

Laboratory of Experimental Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 775 15 Olomouc, Czech Republic. Electronic address:

Familial dysautonomia is a debilitating congenital neurodegenerative disorder with no causative therapy. It is caused by a homozygous mutation in ELP1 gene, resulting in the production of the transcript lacking exon 20. The compounds studied as potential treatments include the clinical candidate kinetin, a plant hormone from the cytokinin family.

View Article and Find Full Text PDF
Article Synopsis
  • - Familial dysautonomia (FD) is a serious inherited disorder caused by a specific genetic mutation that leads to neurological and systemic issues, resulting in shorter life expectancy for those affected.
  • - Researchers developed a CRISPR base editor that can precisely correct the T-to-C mutation causing FD, achieving up to 70% successful editing in cell tests and improving the inclusion of a specific gene exon by over 50%.
  • - The study also included an effective delivery method using engineered adeno-associated virus vectors, demonstrating that this approach can correct genetic defects in neurons and shows promise for a potential permanent treatment for FD with minimal side effects.
View Article and Find Full Text PDF

The extracellular matrix (ECM) is a mixture of glycoproteins and fibrous proteins that provide the biophysical properties necessary to maintain cellular homeostasis. ECM integrity is of particular importance during development, where it allows proper migration and cellular differentiation. Laminins are ECM heterotrimeric proteins consisting of α, β, and γ chains.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!