A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Analysis of autoantibody profiles in two asbestiform fiber exposure cohorts. | LitMetric

An increased risk for Systemic Autoimmune Diseases (SAID) was reported in the population of Libby, Montana, where extensive exposure to asbestiform amphiboles occurred through mining and use of asbestiform fiber-laden vermiculite. High frequencies of antinuclear autoantibodies (ANA) were detected in individuals and mice exposed to Libby Asbestiform Amphiboles (LAA). Among the 6603 individuals who have undergone health screening at the Center for Asbestos Related Diseases (CARD, Libby MT), the frequencies of rheumatoid arthritis, systemic lupus erythematosus, sarcoidosis, and systemic sclerosis are significantly higher than expected prevalence in the United States. While these data support the hypothesis that LAA can trigger autoimmune responses, evidence suggests that chrysotile asbestos does not. Serological testing was therefore performed in subjects exposed to LAA or predominantly chrysotile (New York steamfitters) using multiplexed array technologies. Analyses were performed in order to determine a) autoantibody profiles in each cohort, and b) whether the two populations could be distinguished through predictive modeling. Analysis using perMANOVA testing confirmed a significant difference between autoantibody profiles suggesting differential pathways leading to autoantibody formation. ANA were more frequent in the LAA cohort. Specific autoantibodies more highly expressed with LAA-exposure were to histone, ribosomal P protein, Sm/Ribonucleoproteins, and Jo-1 (histidyl tRNA synthetase). Myositis autoantibodies more highly expressed in the LAA cohort were Jo-1, PM100, NXP2, and Mi2a. Predictive modeling demonstrated that anti-histone antibodies were most predictive for LAA exposure, and anti-Sm was predictive for the steamfitters' exposure. This emphasizes the need to consider fiber types when evaluating risk of SAID with asbestos exposure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6336195PMC
http://dx.doi.org/10.1080/15287394.2018.1512432DOI Listing

Publication Analysis

Top Keywords

autoantibody profiles
12
asbestiform amphiboles
8
predictive modeling
8
laa cohort
8
autoantibodies highly
8
highly expressed
8
laa
6
exposure
5
analysis autoantibody
4
asbestiform
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!