Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
During tumor development, malignant cells rewire their metabolism to meet the biosynthetic needs required to increase their biomass and to overcome their microenvironment constraints. The sustained activation of aerobic glycolysis, also called Warburg effect, is one of these adaptative mechanisms. The progresses in this area of research have revealed the flexibility of cancer cells that alternate between glycolytic and oxidative metabolism to cope with their conditions of development while sharing their energetic resources. In this survey, we review these recent breakthroughs and discuss a model that likens tumor to an evolutive metabolic ecosystem. We further emphasize the ensuing therapeutic applications that target metabolic weaknesses of neoplastic cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1051/medsci/20183408017 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!