Airway epithelium structure/function can be altered by local inflammatory/immune signals, and this process is called epithelial remodeling. The mechanism by which this innate response is regulated, which causes mucin/mucus overproduction, is largely unknown. Exosomes are nanovesicles that can be secreted and internalized by cells to transport cellular cargo, such as proteins, lipids, and miRNA. The objective of this study was to understand the role exosomes play in airway remodeling through cell-cell communication. We used two different human airway cell cultures: primary human tracheobronchial (HTBE) cells, and a cultured airway epithelial cell line (Calu-3). After intercellular exosomal transfer, comprehensive proteomic and genomic characterization of cell secretions and exosomes was performed. Quantitative proteomics and exosomal miRNA analysis profiles indicated that the two cell types are fundamentally distinct. HTBE cell secretions were typically dominated by fundamental innate/protective proteins, including mucin MUC5B, and Calu-3 cell secretions were dominated by pathology-associated proteins, including mucin MUC5AC. After exosomal transfer/intake, approximately 20% of proteins, including MUC5AC and MUC5B, were significantly altered in HTBE secretions. After exosome transfer, approximately 90 miRNAs (∼4%) were upregulated in HTBE exosomes, whereas Calu-3 exosomes exhibited a preserved miRNA profile. Together, our data suggest that the transfer of exosomal cargo between airway epithelial cells significantly alters the qualitative and quantitative profiles of airway secretions, including mucin hypersecretion, and the miRNA cargo of exosomes in target cells. This finding indicates that cellular information can be carried between airway epithelial cells via exosomes, which may play an important role in airway biology and epithelial remodeling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6376407PMC
http://dx.doi.org/10.1165/rcmb.2018-0156OCDOI Listing

Publication Analysis

Top Keywords

airway epithelial
16
epithelial cells
12
cell secretions
12
proteins including
12
including mucin
12
airway
9
epithelial remodeling
8
exosomes play
8
exosomes
7
epithelial
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!