Oceanic islands are dynamic settings that often promote within-island patterns of strong population differentiation. Species with high colonisation abilities, however, are less likely to be affected by genetic barriers, but island size may impact on species genetic structure regardless of dispersal ability. The aim of the present study was to identify the patterns and factors responsible for the structure of genetic diversity at the island scale in Phoenix canariensis, a palm species with high dispersal potential. To this end, we conducted extensive population sampling on the three Canary Islands where the species is more abundant and assessed patterns of genetic variation at eight microsatellite loci, considering different within-island scales. Our analyses revealed significant genetic structure on each of the three islands analysed, but the patterns and level of structure differed greatly among islands. Thus, genetic differentiation fitted an isolation-by-distance pattern on islands with high population densities (La Gomera and Gran Canaria), but such a pattern was not found on Tenerife due to strong isolation between colonised areas. In addition, we found a positive correlation between population geographic isolation and fine-scale genetic structure. This study highlights that island size is not necessarily a factor causing strong population differentiation on large islands, whereas high colonisation ability does not always promote genetic connectivity among neighbouring populations. The spatial distribution of populations (i.e. landscape occupancy) can thus be a more important driver of plant genetic structure than other island, or species' life-history attributes.

Download full-text PDF

Source
http://dx.doi.org/10.1111/plb.12913DOI Listing

Publication Analysis

Top Keywords

genetic structure
20
species high
12
high colonisation
12
genetic
10
phoenix canariensis
8
island scale
8
strong population
8
population differentiation
8
island size
8
islands high
8

Similar Publications

Background: Klebsiella pneumoniae is one of the most prevalent pathogens responsible for multiple infections in healthcare settings and the community. K. pneumoniae CG147, primarily including ST147 (the founder ST), ST273, and ST392, is one of the most globally successful MDR clone linked to various carbapenemases.

View Article and Find Full Text PDF

Development and evaluation of patient-centred polygenic risk score reports for glaucoma screening.

BMC Med Genomics

January 2025

Department of Ophthalmology, Flinders Medical and Health Research Institute, Flinders University, Adelaide, SA, Australia.

Background: Polygenic risk scores (PRS), which provide an individual probabilistic estimate of genetic susceptibility to develop a disease, have shown effective risk stratification for glaucoma onset. However, there is limited best practice evidence for reporting PRS and patient-friendly reports for communicating PRS effectively are lacking. Here we developed patient-centred PRS reports for glaucoma screening based on the literature, and evaluated them with participants using a qualitative research approach.

View Article and Find Full Text PDF

Insights into incompatible plasmids in multidrug-resistant Raoultella superbugs.

BMC Microbiol

January 2025

State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China.

The emergence of multidrug-resistant (MDR) Raoultella isolates is linked to the acquisition of antibiotic resistance genes (ARGs) with plasmids playing a pivotal role in this process. While plasmid-mediated transmission of ARGs in Raoultella has been extensively reported, limited attention has been given to genetically dissecting the modular structures of plasmids. This study aims to elucidate the genomic features of novel incompatible plasmids in MDR Raoultella by presenting 13 complete plasmid sequences from four isolates, along with an analysis of 16 related plasmids from GenBank.

View Article and Find Full Text PDF

We have previously developed a transcription-based bacterial three-hybrid (B3H) assay as a genetic approach to probe RNA-protein interactions inside of E. coli cells. This system offers a straightforward path to identify and assess the consequences of mutations in RBPs with molecular phenotypes of interest.

View Article and Find Full Text PDF

Optimized convolutional neural network using African vulture optimization algorithm for the detection of exons.

Sci Rep

January 2025

Department of Communication Engineering, School of Electronics Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.

The detection of exons is an important area of research in genomic sequence analysis. Many signal-processing methods have been established successfully for detecting the exons based on their periodicity property. However, some improvement is still required to increase the identification accuracy of exons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!