Background: Immune activity and gut microbiota may impact the pathophysiology of irritable bowel syndrome (IBS). We aimed to determine whether antibacterial gene expression of immune activity-defined IBS patients differed compared to healthy subjects (HS) and ulcerative colitis (UC) patients and whether antibacterial profiles reflected gut microbiota composition and IBS symptoms.
Methods: Expression of 84 antibacterial genes in biopsies from HS, IBS patients (clustered according to immune activity (systemic and intestinal cytokines): immunonormal or immunoactive), and UC patients was assessed by Human Antibacterial Response RT Profiler PCR Array. In IBS patients, 16S rRNA gene sequencing of fecal and mucosal bacteria was performed and symptom pattern and severity were assessed.
Key Results: Intestinal antibacterial gene expression profiles differed between IBS patients (n = 31) and HS (n = 16), but did not differ between IBS subgroups based on bowel habit predominance or symptom severity. Based on previously identified IBS clusters, IBS patients with normal (n = 15) and enhanced immune activity (n = 16) had clearly separate antibacterial gene expression profiles from active UC patients (n = 12) and differed compared to each other and to HS. The differences in antibacterial gene expression profiles between immunonormal and immunoactive IBS patients were also reflected in distinct fecal and mucosal microbiota composition profiles, but not in symptom pattern or severity.
Conclusions & Inferences: This study demonstrates an altered antibacterial gene expression profile in IBS patients compared to HS and UC patients. While not linked to symptoms, immune activity-defined IBS clusters showed different intestinal antibacterial gene expression and distinct fecal and mucosal bacterial profiles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/nmo.13468 | DOI Listing |
Phytother Res
January 2025
College of Veterinary Medicine, Yangzhou University, Yangzhou, China.
The rising prevalence of multidrug-resistant (MDR) Gram-positive bacteria threatens the effectiveness of current antibiotic therapies. However, the development of new antibiotics has stagnated in recent years, highlighted the critical need for the discovery of innovative antimicrobial agents. This study aims to evaluate the antibacterial activity of naphthoquinones derived from Arnebia euchroma (Royle) Johnst (ADNs) and elucidate their underlying mechanisms.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China.
Bacterial canker is a devastating disease in kiwifruit production, primarily caused by pv. . In this study, a strain of named JIN4, isolated from a kiwifruit branch, showed antagonistic activity.
View Article and Find Full Text PDFMicrobiome
January 2025
National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
Background: Antimicrobial resistance poses a significant threat to global health, with its spread intricately linked across human, animal, and environmental sectors. Revealing the antimicrobial resistance gene (ARG) flow among the One Health sectors is essential for better control of antimicrobial resistance.
Results: In this study, we investigated regional ARG transmission among humans, food, and the environment in Dengfeng, Henan Province, China by combining large-scale metagenomic sequencing with culturing of resistant bacterial isolates in 592 samples.
Acta Vet Scand
January 2025
Department of Animal Health and Antibiotic Strategies, Swedish Veterinary Agency, Uppsala, Sweden.
Background: Antibiotic resistant bacteria are a threat to both human and animal health. Of special concern are resistance mechanisms that are transmissible between bacteria, such as extended-spectrum beta-lactamases (ESBL) and plasmid-mediated AmpC (pAmpC). ESBL/AmpC resistance is also of importance as it confers resistance to beta-lactam antibiotics including third generation cephalosporins.
View Article and Find Full Text PDFBMC Ophthalmol
January 2025
Department of Tuberculosis, New District Branch of Northern Jiangsu People's Hospital of Jiangsu Province, Yangzhou, 225001, Jiangsu Province, China.
Background: This study aims to detect Mycobacterium tuberculosis complex (MTBC) DNA in intraocular fluid from clinically suspected tuberculous uveitis patients using multiplex polymerase chain reaction (PCR) and investigate the diagnostic utility of multiplex PCR for tuberculous uveitis.
Methods: Primers targeting three specific genes (MPB64, CYP141, and IS6110) within the MTBC genome were designed. Multiplex PCR was conducted using DNA from the H37Rv strain as well as DNA extracted from fluids of confirmed tuberculosis patients to assess primer specificity and method feasibility.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!