The objective of this study was to investigate molecular and physiological changes in response to long-term insulin glargine treatment in the skeletal muscle of OLETF rats. Male Otsuka Long-Evans Tokushima Fatty (OLETF) and Long-Evans Tokushima Otsuka (LETO) rats aged 24 weeks were randomly allocated to either treatment with insulin for 24 weeks or no treatment, resulting in three groups. Insulin glargine treatment in OLETF rats (OLETF-G) for 24 weeks resulted in changes in blood glucose levels in intraperitoneal glucose tolerance tests compared with age-matched, untreated OLETF rats (OLETF-C), and the area under the curve was significantly decreased for OLETF-G rats compared with OLETF-C rats (P < 0.05). The protein levels of MHC isoforms were altered in gastrocnemius muscle of OLETF rats, and the proportions of myosin heavy chain type I and II fibers were lower and higher, respectively, in OLETF-G compared with OLETF-C rats. Activation of myokines (IL-6, IL-15, FNDC5, and myostatin) in gastrocnemius muscle was significantly inhibited in OLETF-G compared with OLETF-C rats ( P < 0.05). MyoD and myogenin levels were decreased, while IGF-I and GLUT4 levels were increased, in the skeletal muscle of OLETF-G rats ( P < 0.05). Insulin glargine treatment significantly increased the phosphorylation levels of AMPK, SIRT1, and PGC-1α. Together, our results suggested that changes in the distribution of fiber types by insulin glargine could result in downregulation of myokines and muscle regulatory proteins. The effects were likely associated with activation of the AMPK/SIRT1/PGC-1α signaling pathway. Changes in these proteins may at least partly explain the effect of insulin in skeletal muscle of diabetes mellitus.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcb.27571DOI Listing

Publication Analysis

Top Keywords

oletf rats
12
long-term insulin
8
skeletal muscle
8
insulin glargine
8
glargine treatment
8
long-evans tokushima
8
rats
6
treatment
5
oletf
5
insulin treatment
4

Similar Publications

, known as Aonori in Japan, is an edible alga species that is mass-cultivated in Japan. Supplementation with Aonori-derived biomaterials has been reported to enhance metabolic health in previous studies. This was an experimental study that evaluated the metabolic health effects of NBF2, a formula made of algal and -derived biomaterials, on obesity and type 2 diabetes (T2DM).

View Article and Find Full Text PDF

Effects of -Fermented Milk on Obesity: Improved Lipid Metabolism through Suppression of Lipogenesis and Enhanced Muscle Metabolism.

Int J Mol Sci

September 2024

Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, 111 Kuboki, Soja-shi 719-1197, Okayama, Japan.

Obesity is a major global health concern. Studies suggest that the gut microflora may play a role in protecting against obesity. Probiotics, including lactic acid bacteria and , have garnered attention for their potential in obesity prevention.

View Article and Find Full Text PDF

Diabetes induces a range of macrovascular and microvascular changes, which lead to significant clinical complications. Although many studies have tried to solve the diabetic problem using drugs, it remains unclear. In this study, we investigated whether resistance exercise affects cardiovascular factors and inflammatory markers in diabetes.

View Article and Find Full Text PDF

Purpose: Bladder dysfunction associated with type 2 diabetes mellitus (T2DM) includes urine storage and voiding disorders. We examined pathological conditions of the bladder wall in a rat T2DM model and evaluated the effects of the phosphodiesterase-5 (PDE-5) inhibitor tadalafil.

Materials And Methods: Male Otsuka Long-Evans Tokushima Fatty (OLETF) rats and Long-Evans Tokushima Otsuka (LETO) rats were used as the T2DM and control groups, respectively.

View Article and Find Full Text PDF

Chronic inflammation in adipose tissue is thought to contribute to insulin resistance, which involves the gut microbiota. Our previous studies have demonstrated that ingestion of 1-kestose can alter the gut microbiota composition, increase cecal butyrate levels, and improve insulin resistance in Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Additionally, we found that 1-kestose supplementation ameliorated insulin resistance in obese rat models fed a high-fat diet (HFD), although the effects of 1-kestose on the abundance of inflammation-related gene in adipose tissue and gut microbiota composition in these rats were not explored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!