Organic-inorganic hybrid dielectrics have attracted considerable attention for improving both the dielectric constant ( k) and mechanical flexibility of the gate dielectric layer for emerging flexible and wearable electronics. However, conventional solution-based hybrid materials, such as nanocomposite and self-assembled nanodielectrics, have limitations in the dielectric quality when the thickness is deep-scaled, which is critical to realizing high-performance flexible devices. This study proposes a novel vapor-phase synthesis method to form an ultrathin, homogeneous, high- k organic-inorganic hybrid dielectric. A series of hybrid dielectrics is synthesized via initiated chemical vapor deposition (iCVD) in a one-step manner, where 2-hydroxyethyl methacrylate and trimethylaluminum are used as the monomer and inorganic precursor, respectively. The thickness and composition are effectively controlled to form a uniform, defect-free hybrid dielectric. As a result, the synthesized hybrid dielectric has a high- k value as high as 7 and exhibits a low leakage current density of less than 3 × 10 A/cm at 2 MV/cm, even with an equivalent oxide thickness of less than 5 nm. Furthermore, the dielectric layer shows exceptional chemical stability without any degradation in its dielectric performance and a smooth surface morphology. The dielectric layer also has good flexibility, maintaining its excellent dielectric performance under a tensile strain of up to 2.6%. Organic thin-film transistors with the developed hybrid dielectric as the gate dielectric achieved hysteresis-free transfer characteristics, with an operating voltage of up to 4 V and excellent mechanical flexibility as well. The hybrid dielectric synthesized via the iCVD process is a promising candidate for high-performance, low-power flexible electronics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.8b12716 | DOI Listing |
Biosensors (Basel)
December 2024
Department of Electrical-Electronics Engineering, Abdullah Gul University, Kayseri 38039, Türkiye.
detection suffers from slow analysis time and high costs, along with the need for specificity. While state-of-the-art electrochemical biosensors are cost-efficient and easy to implement, their sensitivity and analysis time still require improvement. In this work, we present a paper-based electrochemical biosensor utilizing magnetic core-shell FeO@CdSe/ZnS quantum dots (MQDs) to achieve fast detection, low cost, and high sensitivity.
View Article and Find Full Text PDFMater Horiz
December 2024
School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China.
The functions of graphene have garnered significant attention in recent research. A profound understanding of the principles of temperature-dependent electromagnetic responses is crucial for guiding the design of advanced functional materials and devices. From this perspective, the thermally tailored mechanisms of polarization genes and conduction genes are emphasized.
View Article and Find Full Text PDFACS Omega
December 2024
Metamaterials Laboratory, Electrical and Computer Engineering Department, Northeastern University, Boston, Massachusetts 02115, United States.
Janus micro- and nanoparticles, featuring unique dual-interface designs, are at the forefront of rapidly advancing fields such as optics, medicine, and chemistry. Accessible control over the position and orientation of Janus particles within a cluster is crucial for unlocking versatile applications, including targeted drug delivery, self-assembly, micro- and nanomotors, and asymmetric imaging. Nevertheless, precise mechanical manipulation of Janus particles remains a significant practical challenge across these fields.
View Article and Find Full Text PDFSoft Matter
December 2024
South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China.
Understanding the interplay among the mechanical behavior, ionic conductivity and chain dynamics of ionogels is essential for designing flexible conductors that exhibit both high conductivity and excellent mechanical properties. In this study, ionogels were synthesized the radical polymerization of ,'-dimethylacrylamide (DMAA) and methacrylic acid (MAAc) monomers in the presence of ionic liquid 1-ethyl-3-methylimidazolium trifluoromethane sulfonate ([EMIM][OTf]). By varying the mass content of ionic liquid within ionogels, we investigated the mechanical behavior and ionic conductivity at the macroscopic scale using tensile, rheological testing and electrochemical impedance spectroscopy, as well as the dynamic behavior of chain segments and ions within the network at the microscopic scale using broadband dielectric relaxation spectroscopy (BDS) over a broad temperature range.
View Article and Find Full Text PDFPhys Chem Chem Phys
December 2024
Department of Electrical Engineering, College of Technical and Engineering, West Tehran Branch, Islamic Azad University, Tehran 1461944563, Iran.
Tunnel field-effect transistors (TFETs) are gaining interest for low-power applications, but challenges like poor drive current, delayed saturation, and ambipolarity can hinder their performance. This work proposes a dopingless heterojunction TFET (DL-HTDET) utilizing advanced materials, all based on phosphorus, to address these issues. Our approach involves a comprehensive and accurate analysis of the DL-HTDET's behavior.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!