[Adsorption Mechanisms of Ciprofloxacin by Extracellular Polymeric Substances of Sulfate-reducing Bacteria Sludge].

Huan Jing Ke Xue

Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China.

Published: October 2018

Extracellular polymeric substances (EPS) in microbial sludge, fulfils a key role in removal of micro-organic pollutants during biological wastewater treatment. In this study, the authors evaluated the removal of ciprofloxacin (CIP) by sulfate-reducing bacteria (SRB) sludge in a sulfate-reducing up-flow sludge bed (SRUSB) reactor, and examined the role of EPS on CIP removal in an SRB sludge system. The results indicated that CIP was removed efficiently through adsorption and biodegradation by SRB sludge, with adsorption the major removal pathway. EPS also played an important role in CIP adsorption by SRB sludge, and the adsorption mechanisms of CIP by EPS were investigated using the three-dimensional excitation-emission matrix fluorescence spectroscopy technologies combined with parallel factor analysis. The functional groups binding CIP onto EPS were identified through Fourier transform infrared (FTIR) spectra analysis. The results suggested that the static quenching of EPS following CIP adsorption led to formation of an EPS-CIP complex, and that the CIP was mainly bound with tryptophan and tyrosine-like protein substances in EPS with the binding constants of 1.43×10 L·mol and 1.02×10 L·mol, respectively. The FTIR results suggested that hydroxyl, amino and carboxyl functional groups were mainly responsible for binding of CIP onto EPS. The results revealed the adsorption mechanisms of CIP by EPS in SRB sludge, and enhanced understanding of the role of EPS in sulfur-mediated biological processes for the removal of CIP and other organic micro-pollutants.

Download full-text PDF

Source
http://dx.doi.org/10.13227/j.hjkx.201802132DOI Listing

Publication Analysis

Top Keywords

srb sludge
20
cip eps
16
cip
11
eps
10
extracellular polymeric
8
polymeric substances
8
sulfate-reducing bacteria
8
substances eps
8
role eps
8
eps cip
8

Similar Publications

The Microbiologically Influenced Corrosion and Protection of Pipelines: A Detailed Review.

Materials (Basel)

October 2024

School of Environmental and Municipal Engineering, Qingdao University of Technology, 777 Jialingjiang Rd, Qingdao 266000, China.

Article Synopsis
  • - Microbial corrosion refers to the damage caused to materials by microorganisms, particularly in industries like oil and gas, leading to significant losses in facilities such as sewage systems and food-processing equipment.
  • - Sulfate-reducing bacteria (SRB) is identified as the most harmful type of bacteria involved in this process, contributing to mechanisms like pitting corrosion and cathodic depolarization in pipelines.
  • - The review highlights potential strategies for controlling microbial corrosion in pipelines, emphasizing the exploration of new, eco-friendly protection methods.
View Article and Find Full Text PDF

Inoculating sulfate-reducing bacteria (SRB) habitats offers an eco-friendly method for treating sulfate-metal laden wastewater, characterized by high sulfate levels, low pH, and elevated heavy metals. This study optimizes source habitat selection of SRB by evaluating groundwater, sewage sludge, and lake sediment, focusing on their suitability and adaptability to aerobic-anaerobic transitions in industrial settings. Sewage sludge, with its slightly acidic pH, reducing environment, and high nutrient levels (Total organic carbon: 207.

View Article and Find Full Text PDF

Multi-method characterization of groundwater nitrate and sulfate contamination by karst mines in southwest China.

Sci Total Environ

October 2024

State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu 610059, PR China; College of Environment Civil Engineering, Chengdu University of Technology, Chengdu 610059, PR China; College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China. Electronic address:

Groundwater contamination by nitrate and sulfate in mining areas is a significant challenge. Consequently, the inputs sources of these contaminants and their evolution have received considerable attention, with the knowledge gained critical for improved management of water quality. This study integrated data on multiple stable isotopes and water chemistry data and a Bayesian isotope mixing model to investigate the relative contributions of inputs sources of sulfate and nitrate sources to bodies of water in a karst mining area in southwest China.

View Article and Find Full Text PDF

The fluvial transport of dissolved inorganic carbon (DIC) is an important component of the global carbon cycle. Herein, we assessed the dynamics of DIC and the C stable isotopic composition (δC) in a watershed with diversified land use in São Paulo State (Brazil), more specifically in the Sorocaba River basin (SRB) and considered the temporal and spatial scales. For this purpose, twelve fluvial samples at each sampling point (e.

View Article and Find Full Text PDF

The development of low-cost, highly efficient adsorbent materials is of significant importance for environmental remediation. In this study, a novel material, sulfurized nano zero-valent iron loaded biomass carbon (S-nZVI/BC), was successfully synthesized by a simple manufacturing process. The preparation of S-nZVI/BC does not require the use of expensive and hazardous chemicals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!