Antimicrobial Peptides: the Achilles' Heel of Antibiotic Resistance?

Probiotics Antimicrob Proteins

Centre of Excellence for Pharmaceutical Sciences (Pharmacen), North-West University, 11 Hoffman Street, Potchefstroom, 2520, South Africa.

Published: June 2019

Antibiotic resistance is an imminent threat to the effective treatment of bacterial infections, and alternative antibiotic strategies are urgently required. The golden epoch of antibiotics is coming to an end, and the development of new therapeutic agents to combat bacterial infections should be prioritized. This article will review the potential of antimicrobial peptides (AMPs) to combat the threat of antimicrobial resistance. The modern-day antimicrobial resistance dilemma is briefly discussed followed by a review of the potential of AMPs to be used alone or in combination with current antibiotics in order to enhance antibacterial properties of antibiotics while also potentially combatting resistance. This article reiterates that many AMPs exhibit direct microbial killing activity and also play an integral role in the innate immune system. These properties make AMPs attractive alternative antimicrobial agents. Furthermore, AMPs are promising candidates to be used as adjuvants in combination with current antibiotics in order to combat antibiotic resistance. Combinations of AMPs and antibiotics are less likely to develop resistance or transmit cross-resistance. The further identification and therapeutic development of AMPs and antibiotic-AMP combinations are strongly recommended.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12602-018-9465-0DOI Listing

Publication Analysis

Top Keywords

antimicrobial peptides
8
antibiotic resistance
8
bacterial infections
8
review potential
8
antimicrobial resistance
8
combination current
8
current antibiotics
8
antibiotics order
8
amps
7
resistance
6

Similar Publications

Fungi and their natural products, like secondary metabolites, have gained a huge demand in the last decade due to their increasing applications in healthcare, environmental cleanup, and biotechnology-based industries. The fungi produce these secondary metabolites (SMs) during the different phases of their growth, which are categorized into terpenoids, alkaloids, polyketides, and non-ribosomal peptides. These SMs exhibit significant biological activity, which contributes to the formulation of novel pharmaceuticals, biopesticides, and environmental bioremediation agents.

View Article and Find Full Text PDF

Antimicrobial peptides (AMPs) are key components of innate immunity across all domains of life. Natural and synthetic AMPs are receiving renewed attention in efforts to combat the antimicrobial resistance (AMR) crisis and the loss of antibiotic efficacy. The gram-negative pathogen Pseudomonas aeruginosa is one of the most concerning infecting bacteria in AMR, particularly in people with cystic fibrosis (CF) where respiratory infections are difficult to eradicate and associated with increased morbidity and mortality.

View Article and Find Full Text PDF

Challenges and applications of artificial intelligence in infectious diseases and antimicrobial resistance.

NPJ Antimicrob Resist

January 2025

Machine Biology Group, Department of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Artificial intelligence (AI) has transformed infectious disease control, enhancing rapid diagnosis and antibiotic discovery. While conventional tests delay diagnosis, AI-driven methods like machine learning and deep learning assist in pathogen detection, resistance prediction, and drug discovery. These tools improve antibiotic stewardship and identify effective compounds such as antimicrobial peptides and small molecules.

View Article and Find Full Text PDF

Multicellular animals need to control the spread of invading pathogens. This is a particular challenge for blood-feeding vectors such as ticks, which ingest large amounts of blood potentially laden with harmful microorganisms. Ticks have a basic innate immune system and protect themselves from infection through innate immune responses involving pathways such as Janus kinase (JAK) or the signalling transducer activator of transcription (STAT).

View Article and Find Full Text PDF

Antimicrobial Component Concentrations in the Milk of Peripartum Goats.

Anim Sci J

January 2025

Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan.

The aim of this study was to investigate changes in milk conditions and antimicrobial components in goats during 8 weeks prepartum and 1 week postpartum. Milk was collected weekly from seven prepartum goats 8 weeks before the due day, immediately, and 1 week after parturition. Milk color scores and the concentration of antimicrobial components (cathelicidin-7 and S100A8) were significantly increased prepartum.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!