In the present study, the synthesis of new selenoethers from nucleophilic substitution reaction between organyl halides and nucleophilic species of selenium generated in situ was demonstrated. After, this method was applied for the synthesis of pyridylselenides glycerol derivatives 9b and 9c and the antinociceptive and anti-inflammatory effects, as well as, acute toxicity were evaluated. In the formalin test, the compound 9b caused a reduction in licking time in both phases. Compounds 9b and 9c increased the latency to response in the hot-plate test and reduced the licking time induced by glutamate. Our results revealed the involvement of the nitrergic and/or glutamatergic pathways in the antinociceptive action of the compounds. Additionally, 9b and 9c did not cause any toxicity signals and oxidative stress parameters were not modified by treatments. Here, it was developed an alternative and efficient method for the synthesis of selenoethers glycerol derivatives. Furthermore, we demonstrated that this class is indeed interesting for the research of new drugs. Graphical Abstract ᅟ.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12010-018-2887-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!