We use density functional theory-based calculations to study structural, electronic, and magnetic properties of two key reaction intermediates on a hematite, [Formula: see text]-FeO, photoanode during the solar-driven water splitting reaction. Both intermediates contain an oxygen atom bonded to a surface iron atom. In one case, the adsorbed oxygen also forms a peroxo bond with a lattice oxygen from hematite; in the second case no such bond is formed. Both configurations are energetically equivalent and are related to the overpotential-determining step in the oxygen evolution reaction. The calculated reaction path for the breaking of the peroxo bond shows a barrier of about 0.86 eV for the transformation between the two intermediates. We explain this high barrier with the drastically different electronic and magnetic structure, which we also analyze using maximally localized Wannier functions. Photo-generated electron holes are shown to localize preferentially close to the reaction center at the surface in both configurations. In the case of the oxo species, this localization favors subsequent electron transfer steps during the oxygen evolution cycle. In the case of the peroxo configuration, this fact together with the high barrier for breaking the oxygen-oxygen bond indicates a possible loss mechanism due to hole trapping. Graphical Abstract Calculated spin density at a hematite surface with peroxo intermediate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00894-018-3815-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!