Data in this article describes logistics management on construction sites in Abuja, Nigeria. Data was elicited from 55 construction professionals comprising of Architects, Builders, Civil Engineers, Project Managers and Quantity Surveyors. The Data set in this study consists of responses on: factors affecting material purchase on construction sites, factors affecting accuracy of material delivery, challenges encountered during material delivery, benefits of material delivery on construction sites and methods of forecasting material demand on construction sites. This article provides insight into logistics management on construction sites in Nigeria and it can be a useful guide for similar research in other contexts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6140358 | PMC |
http://dx.doi.org/10.1016/j.dib.2018.08.194 | DOI Listing |
BMC Bioinformatics
January 2025
MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
Background: CRISPRi screening has become a powerful approach for functional genomic research. However, the off-target effects resulting from the mismatch tolerance between sgRNAs and their intended targets is a primary concern in CRISPRi applications.
Results: We introduce Guide Library Designer (GLiDe), a web-based tool specifically created for the genome-scale design of sgRNA libraries tailored for CRISPRi screening in prokaryotic organisms.
Nat Commun
January 2025
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 130012, Changchun, P. R. China.
High-entropy metal-organic frameworks (HE-MOFs) hold promise as versatile materials, yet current rare examples are confined to low-valence elements in the fourth period, constraining their design and optimization for diverse applications. Here, a novel high-entropy, defect-rich and small-sized (32 nm) UiO-66 (ZrHfCeSnTi HE-UiO-66) has been synthesized for the first time, leveraging increased configurational entropy to achieve high tolerance to doping with diverse metal ions. The lattice distortion of HE-UiO-66 induces high exposure of metal nodes to create coordination unsaturated metal sites with a concentration of 322.
View Article and Find Full Text PDFBioorg Chem
December 2024
Good Clinical Practice Development, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China. Electronic address:
Inhibition of human concentrative nucleoside transporter 2 (CNT2) could suppress increases in serum urate levels derived from dietary purines. However, the structural basis for substrate recognition of CNT2 is still unknown and only a few inhibitors have been reported. In this study, a homology model of CNT2 was constructed and residues T315, E316, N426, N491, E492, F536 and N538 were identified as binding sites for adenosine through site-directed mutagenesis and a H-adenosine uptake assay.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Department of Epidemiology and Statistics, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China. Electronic address:
Background: Environmental noise seriously affects people's health and life quality, but there is a scarcity of noise exposure data in metropolitan cities and at nighttime, especially in developing countries.
Objective: This study aimed to assess the environmental noise level by land use regression (LUR) models and create daytime and nighttime noise maps with high-resolution of Guangzhou municipality.
Methods: A total of 100 monitoring sites were randomly selected according to population density.
Water Res
December 2024
Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China. Electronic address:
Activation of HO cleavage for H* production by defect engineering eliminates the insufficient supply of protons in the NORR process under neutral conditions. However, it remains challenging to precisely control the defect formation for optimizing the equilibrium between H* production and H* binding. Here, we propose a strategy to boost defect generation through S-doping induced NiFe-LDH lattice distortion, and successfully optimize the balance of H* production and binding.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!