Ignited by the discovery of the metal-insulator transition, the behaviour of low-disorder two-dimensional (2D) electron systems is currently the focus of a great deal of attention. In the strongly interacting limit, electrons are expected to crystallize into a quantum Wigner crystal, but no definitive evidence for this effect has been obtained despite much experimental effort over the years. Here, studying the insulating state of a 2D electron system in silicon, we have found two-threshold voltage-current characteristics with a dramatic increase in noise between the two threshold voltages. This behaviour cannot be described within existing traditional models. On the other hand, it is strikingly similar to that observed for the collective depinning of the vortex lattice in type-II superconductors. Adapting the model used for vortexes to the case of an electron solid yields good agreement with our experimental results, favouring the quantum electron solid as the origin of the low-density state.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6143544 | PMC |
http://dx.doi.org/10.1038/s41467-018-06332-9 | DOI Listing |
Pharmaceutics
November 2024
Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca CP 62209, Mexico.
Doxorubicin (Dox) is an anticancer drug used in the treatment of a wide range of solid tumors; however, Dox causes systemic toxicity and irreversible cardiotoxicity. The design of a new nanosystem that allows for the control of Dox loading and delivery results is a powerful tool to control Dox release only in cancer cells. For this reason, supramolecular self-assembly was performed between a poly(amidoamine) (PAMAM) dendrimer decorated with four β-cyclodextrin (βCD) units (PAMAM-βCD) and an adamantane-hydrazone-doxorubicin (Ad-h-Dox) prodrug.
View Article and Find Full Text PDFPharmaceutics
November 2024
Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
Nitazoxanide (NTX) exhibits promising therapeutic potential; its effectiveness is constrained by its low oral bioavailability due to its poor water solubility and limited permeability. This study focused on developing a complex of NTX with β-cyclodextrins (β-CDs), specifically β-CD and hydroxypropyl-β-cyclodextrin (Hβ-CD), to enhance the solubility and antiviral activity of NTX. The formation of the β-CD:NTX in an aqueous solution was verified using UV-visible spectroscopy, confirming a 1:1 inclusion complex.
View Article and Find Full Text PDFToxics
December 2024
School of Resource and Environmental Engineering, Shandong University of Technology, Zibo 255000, China.
The solid phase composition in oily sludge (OS) is a key factor affecting the oil-solid separation of OS. In this paper, the effects and mechanisms of solid-phase particle factors on the oil content of residue phase were investigated in order to improve the oil-solid separation efficiency. Flotation experiments were carried out on single-size sand and mixed-size sand OS consisting of three particle sizes at room temperature without adding flotation reagents.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Institute of Materials and Surface Engineering, Faculty of Natural Science and Technology, Riga Technical University, Paula Valdena st. 3/7, LV-1048 Riga, Latvia.
Sintered porous mullite-alumina ceramics are obtained from the concentrated suspension of powdered raw materials such as kaolin, gamma and alpha AlO, and amorphous SiO, mainly by a solid-state reaction with the presence of a liquid phase. The modification of mullite ceramic is achieved by the use of micro- and nanosize TiO powders. The phase compositions were measured using an X-ray powder diffraction (XRD) Rigaku Ultima+ (Tokyo, Japan) and microstructures of the sintered specimens were analysed using scanning electron microscopy (SEM) Hitachi TM3000-TableTop (Tokyo, Japan).
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Institute of Natural Sciences and Mathematics, Ural Federal University, 620002 Yekaterinburg, Russia.
The development and characterization of synthesis techniques for oxide materials based on ceria is a subject of extensive study with the objective of their wide-ranging applications in pursuit of sustainable development. The present study demonstrates the feasibility of controlled synthesis of CeMO (M = Fe, Ni, Co, Mn, Cu, Ag, Sm, Cs, x = 0.0-0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!