Three-Dimensional Bioprinting of Cartilage by the Use of Stem Cells: A Strategy to Improve Regeneration.

Materials (Basel)

RAMSES Laboratory, Rizzoli RIT-Research, Innovation & Technology Department, Istituto di Ricerca Codivilla Putti, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy.

Published: September 2018

Cartilage lesions fail to heal spontaneously, leading to the development of chronic conditions which worsen the life quality of patients. Three-dimensional scaffold-based bioprinting holds the potential of tissue regeneration through the creation of organized, living constructs via a "layer-by-layer" deposition of small units of biomaterials and cells. This technique displays important advantages to mimic natural cartilage over traditional methods by allowing a fine control of cell distribution, and the modulation of mechanical and chemical properties. This opens up a number of new perspectives including personalized medicine through the development of complex structures (the osteochondral compartment), different types of cartilage (hyaline, fibrous), and constructs according to a specific patient's needs. However, the choice of the ideal combination of biomaterials and cells for cartilage bioprinting is still a challenge. Stem cells may improve material mimicry ability thanks to their unique properties: the immune-privileged status and the paracrine activity. Here, we review the recent advances in cartilage three-dimensional, scaffold-based bioprinting using stem cells and identify future developments for clinical translation. Database search terms used to write this review were: "articular cartilage", "menisci", "3D bioprinting", "bioinks", "stem cells", and "cartilage tissue engineering".

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6164915PMC
http://dx.doi.org/10.3390/ma11091749DOI Listing

Publication Analysis

Top Keywords

stem cells
12
three-dimensional scaffold-based
8
scaffold-based bioprinting
8
biomaterials cells
8
cartilage
6
cells
5
three-dimensional bioprinting
4
bioprinting cartilage
4
cartilage stem
4
cells strategy
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!