Objective: To compare the shear bond strength (SBS) values of orthodontic brackets luted using a resin-modified glass ionomer cement (RMGIC) on enamel surfaces etched using either an Er:YAG laser in two different working modes, or a conventional etching protocol, including phosphoric acid.

Materials And Methods: Sixty healthy human premolars were randomly allocated to three experimental groups (n = 20) and etched with: Group 1: Er:YAG laser in super-short pulse (SSP) mode (100 mJ, 20 Hz, 2 W); Group 2: Er:YAG laser in quantum square pulse mode (120 mJ, 10 Hz, 1.2 W) using a digitally controlled handpiece ("X-Runner"); Group 3 (control): 5.25% sodium hypochlorite pretreatment, then 37% phosphoric acid for 15 sec. Stainless steel brackets were bonded using light-curing RMGIC for orthodontic bonding. After term cycling (1800 cycles), SBS testing was performed using a universal testing machine. After debonding, both enamel and bracket surfaces were examined to determine the amount of RMGIC still present on the surfaces.

Results: Group 3 surfaces gave the lowest mean SBS (10.6104 ± 2.66196 MPa), whereas Group 1 provided the highest 1 (13.1795 ± 3.37904 MPa), which was significantly different from the control (Group 3, p = 0.0226). Group 2 provided intermediate values (11.8486 ± 0.59832 MPa) nonsignificantly different from the control or from SSP (p = 0.4215 and p = 0.3082, respectively).

Conclusions: Er:YAG laser treatment in SSP mode of enamel surfaces for orthodontic bonding provided higher SBS and a shear behavior of the luting material similar to the conventional acid-etching procedures, making it a viable alternative to acid etching.

Download full-text PDF

Source
http://dx.doi.org/10.1089/pho.2018.4461DOI Listing

Publication Analysis

Top Keywords

eryag laser
20
shear bond
8
bond strength
8
orthodontic brackets
8
brackets luted
8
digitally controlled
8
enamel surfaces
8
group eryag
8
ssp mode
8
orthodontic bonding
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!