Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
To preparation of ultra-clean gasoline fuel, a new amphiphilic nanocomposite (TBA-SiWMn@PVA) has been successfully synthesized by supporting sandwich-type silicotungstate polyoxometalate ((n-CH)N)HSiWMnO (TBA-SiWMn) on polyvinylalcohol (PVA) as an efficient catalyst for catalytic oxidative desulphurization (CODS) of gasoline. The synthesized materials were characterized by means of elemental analysis, Mn NMR, Si NMR, XRD, SEM, FT-IR and UV-vis techniques. The catalytic activity of TBA-SiWMn@PVA nanocomposite was tested on real gasoline in the presence of CHCOOH/HO as an oxidant and the results were compared with model sulphur compounds at the same conditions. The TBA-SiWMn@PVA nanocomposite was shown excellent catalytic performance and recoverability for ODS of gasoline with high yield. The effects of the reaction time, reaction temperature, dosage and nature of catalyst were investigated. The reaction mechanism and the kinetic parameters of sulphur compounds oxidation were also discussed. The probable mechanism was proposed the electrophilic mechanism through the formation of a peroxometalate intermediate complex with phase transfer properties. Results were indicated that the kinetics of sulphur oxidation fitted the pseudo-first-order kinetic model. After 5 oxidation runs, the heterogeneous nanocatalyst was separated and recovered easily.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/09593330.2018.1526217 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!