Circulating epithelial tumor cells (CETCs) in peripheral blood are a prerequisite for the development of metastases. B7-H3 is an important immune checkpoint member of the B7 family and inhibits T-cell mediated antitumor immunity. Its expression is associated with a negative prognosis and a poor clinical outcome. Based on the clinical success of inhibitory immune checkpoint blockade, monoclonal antibodies (mAbs) against B7-H3 appear to be a promising therapeutic strategy. The proliferation biomarker, Ki-67, is used as a prognostic factor for breast cancer and reflects the proliferative potential of the tumor. In order to better understand the role of B7-H3 and Ki-67 in cancer development, in this study, we used a real-time biopsy for determining both biomarkers on CETCs in breast cancer patients. Blood from 50 patients suffering from breast cancer was analyzed for CETCs and the expression of B7-H3 and Ki-67 using the maintrac® method. B7-H3 expression on CETCs was found in 82% of the patients. The frequency of B7-H3- and Ki-67‑positive CETCs was significantly higher in patients who had received radiation therapy compared to patients who had not received irradiation. B7-H3‑positive CETCs seemed to be more aggressive as the percentage of B7-H3‑positive CETCs correlated with the percentage of cells positive for the proliferation marker, Ki-67 (r=0.72 P<0.001). A significant association between the Ki-67 and B7-H3 expression level on the CETCs and nodal status was observed. On the whole, the findings of this study indicate that breast cancer patients have detectable CETCs with a high frequency of B7-H3 expression regardless of the stage of the disease. B7-H3 seems to be an important factor in immune evasion and may thus be a promising target for anticancer therapies. Radiation may lead to an upregulation of B7-H3 expression on CETCs, which could be a possible mechanism of acquired radio-resistance.

Download full-text PDF

Source
http://dx.doi.org/10.3892/ijo.2018.4551DOI Listing

Publication Analysis

Top Keywords

breast cancer
16
circulating epithelial
8
epithelial tumor
8
tumor cells
8
proliferation marker
8
marker ki-67
8
cancer patients
8
immune checkpoint
8
b7-h3 ki-67
8
patients received
8

Similar Publications

Ultrasound-responsive nanoparticles for nitric oxide release to inhibit the growth of breast cancer.

Cancer Cell Int

December 2024

Department of Ultrasound, Chongqing General Hospital, Chongqing University, Chongqing, 401147, China.

Gas therapy represents a promising strategy for cancer treatment, with nitric oxide (NO) therapy showing particular potential in tumor therapy. However, ensuring sufficient production of NO remains a significant challenge. Leveraging ultrasound-responsive nanoparticles to promote the release of NO is an emerging way to solve this challenge.

View Article and Find Full Text PDF

Targeting CDK2 to circumvent treatment resistance in HR breast cancer.

Trends Mol Med

December 2024

Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA. Electronic address:

Genetic and epigenetic defects of the p53 system have previously been associated with resistance to CDK4/6 inhibitors in women with HR breast cancer. Recent data from Kudo et al. demonstrate that CDK2-targeting agents may offer an effective strategy to circumvent such resistance by enforcing cellular senescence downstream of RBL2 dephosphorylation.

View Article and Find Full Text PDF

Dabrafenib upregulates hypoglycosylated MUC1 and improves the therapeutic efficacy of Tn-MUC1 CAR-T cells.

Sci Bull (Beijing)

December 2024

Breast Cancer Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China. Electronic address:

View Article and Find Full Text PDF

Computational Pathology Detection of Hypoxia-Induced Morphological Changes in Breast Cancer.

Am J Pathol

December 2024

Department of Computer Science, Faculty of Engineering Sciences, University College London, Gower Street, London, WC1E 6BT, United Kingdom.

Understanding the tumor hypoxic microenvironment is crucial for grasping tumor biology, clinical progression, and treatment responses. This study presents a novel application of AI in computational histopathology to evaluate hypoxia in breast cancer. Weakly Supervised Deep Learning (WSDL) models can accurately detect morphological changes associated with hypoxia in routine Hematoxylin and Eosin (H&E) whole slide images (WSI).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!