Dynamic influence of Rhein lysinate on HeLa cells.

Int J Oncol

The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing 100730, P.R. China.

Published: November 2018

In a previous study, it was demonstrated that Rhein lysinate (RHL) inhibited HeLa cell proliferation via a specific mechanism. The aim of the present study was to clarify the mechanism of RHL by investigating its effect on mitochondrial damage and cell apoptosis. The results indicated that RHL inhibited cell growth and proliferation in HeLa cells. HeLa cells treated with RHL developed extensive vacuolization in a dose- and time-dependent manner. Ultrastructure analysis using transmission electron microscopy revealed that the vacuoles observed were damaged mitochondria and endoplasmic reticulum. The effects of RHL on mitochondria were further confirmed by a decrease in mitochondrial membrane potential and increased generation of reactive oxygen species. The mitochondrial proteome was analyzed, and the results demonstrated that the expression of the cytoskeletal protein keratin and dermal papilla derived protein 12 (associated with the oxidation-reduction process), which are associated with mitochondrial structure and function, were decreased compared with the untreated control group. Hoechst staining, flow cytometry and western blotting also revealed that apoptosis was induced at 24 h following RHL treatment. These results confirm that RHL toxicity in HeLa cells is a dynamic process. Vacuolar degeneration appeared in HeLa cells treated with 160 µmol/l RHL during the first 6 h and with the extension of RHL treatment, cell apoptosis was presented at ~24 h in HeLa cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6192761PMC
http://dx.doi.org/10.3892/ijo.2018.4554DOI Listing

Publication Analysis

Top Keywords

hela cells
24
rhl
9
rhein lysinate
8
rhl inhibited
8
cell apoptosis
8
cells treated
8
rhl treatment
8
hela
7
cells
6
dynamic influence
4

Similar Publications

Lysosomal storage diseases (LSDs) comprise ~50 monogenic disorders marked by the buildup of cellular material in lysosomes, yet systematic global molecular phenotyping of proteins and lipids is lacking. We present a nanoflow-based multiomic single-shot technology (nMOST) workflow that quantifies HeLa cell proteomes and lipidomes from over two dozen LSD mutants. Global cross-correlation analysis between lipids and proteins identified autophagy defects, notably the accumulation of ferritinophagy substrates and receptors, especially in and mutants, where lysosomes accumulate cholesterol.

View Article and Find Full Text PDF

Rational engineering of a recognition group to construct a two-photon reaction-based fluorescent probe for rapid and selective sensing of cysteine.

Analyst

January 2025

Anhui Provincial Key Laboratory of Biomedical Materials and Chemical Measurement, Laboratory of Functionalized Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.

It is highly required to rationally design fluorescent probes a molecular engineering strategy with desired analytical performance for applications in sensing and imaging. Reaction-based fluorescent probes for highly selective sensing of cysteine (Cys) are mainly based on the participation of Cys in reactions such as, addition-cyclization with acrylates, cyclization with aldehydes, coordination displacement, Michael addition reactions, and cleavage reactions. Cys-triggered reactions with the O atoms of ether bonds has also been used to construct reaction-based fluorescent probes based on the substitution of the ether with the nucleophilic thiolate of Cys.

View Article and Find Full Text PDF

The wide range of applications and the enormous production of nanomaterials have raised the possibility that humans may simultaneously contact with various nanomaterials through multiple routes. Although numerous toxicity studies have been conducted on the toxicity of nanomaterials, knowledge of the combined toxicity of nanomaterials remains limited. Herein, the combined toxic effects of the two types of the most widely used nanomaterials, silver and silica, were studied on HeLa cells.

View Article and Find Full Text PDF

The ribotoxic stress response is a pathway that gets activated when ribosomes get impaired, leading to disruptions in protein synthesis, increased inflammatory signaling, and cell death if left unresolved. Taraxacum can induce apoptosis-associated ribosomal RNA (rRNA) cleavage, however, the exact working mechanism of Taraxacum-induced rRNA cleavage remains unclear. In this study, we used the RNA integrity (RIN) value and 28S/18S ratio to confirm the integrity of experiments.

View Article and Find Full Text PDF

TRAF2 and RIPK1 redundantly mediate classical NFκB signaling by TNFR1 and CD95-type death receptors.

Cell Death Dis

January 2025

Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Auvera Haus Grombühlstraße 12, 97080, Würzburg, Germany.

This study suggests a modified model of TNFR1-induced complex I-mediated NFκB signaling. Evaluation of a panel of five tumor cell lines (HCT116-PIK3CAmut, SK-MEL-23, HeLa-RIPK3, HT29, D10) with TRAF2 knockout revealed in two cell lines (HT29, HeLa-RIPK3) a sensitizing effect for death receptor-induced necroptosis and in one cell line (D10) a mild sensitization for TNFR1-induced apoptosis. TRAF2 deficiency inhibited death receptor-induced classical NFκB-mediated production of IL-8 only in a subset of cell lines and only partly.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!