Aims: The provision of high-quality education allows the European Society of Cardiology (ESC) to achieve its mission of better cardiovascular practice and provides an essential component of translating new evidence to improve outcomes.

Methods And Results: The 4th ESC Education Conference, held in Sophia Antipolis (December 2016), brought together ESC education leaders, National Directors of Training of 43 ESC countries, and representatives of the ESC Young Community. Integrating national descriptions of education and cardiology training, we discussed innovative pathways to further improve knowledge and skills across different training programmes and health care systems. We developed an ESC roadmap supporting better cardiology training and continued medical education (CME), noting: (i) The ESC provides an excellent framework for unbiased and up-to-date cardiovascular education in close cooperation with its National Societies. (ii) The ESC should support the harmonization of cardiology training, curriculum development, and professional dialogue and mentorship. (iii) ESC congresses are an essential forum to learn and discuss the latest developments in cardiovascular medicine. (iv) The ESC should create a unified, interactive educational platform for cardiology training and continued cardiovascular education combining Webinars, eLearning Courses, Clinical Cases, and other educational programmes, along with ESC Congress content, Practice Guidelines and the next ESC Textbook of Cardiovascular Medicine. (v) ESC-delivered online education should be integrated into National and regional cardiology training and CME programmes.

Conclusion: These recommendations support the ESC to deliver excellent and comprehensive cardiovascular education for the next generation of specialists. Teamwork between international, national and local partners is essential to achieve this objective.

Download full-text PDF

Source
http://dx.doi.org/10.1093/eurheartj/ehy058DOI Listing

Publication Analysis

Top Keywords

cardiology training
20
cardiovascular education
16
esc
13
education
10
european society
8
society cardiology
8
knowledge skills
8
esc education
8
training continued
8
cardiovascular medicine
8

Similar Publications

MFN2-mediated decrease in mitochondria-associated endoplasmic reticulum membranes contributes to sunitinib-induced endothelial dysfunction and hypertension.

J Mol Cell Cardiol

January 2025

Department of Cardiology, Harbin Medical University Cancer Hospital, NHC Key Laboratory of Cell Transplantation, Department of Cardiology, Central Laboratory, The First Affiliated Hospital of Harbin Medical University, Institute of Metabolic Disease, Heilongjiang Academy of Medical Sciences, Heilongjiang Key Laboratory for Metabolic Disorder & Cancer Related Cardiovascular Diseases, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin, China. Electronic address:

Unlabelled: Treatment of cancer patients with tyrosine kinase inhibitors (TKIs) often results in hypertension, but the underlying mechanism remains unclear. This study aimed to examine the role of mitochondrial morphology and function, particularly mitochondria-associated endoplasmic reticulum membranes (MAMs), in sunitinib-induced hypertension.

Methods: Both in vitro and in vivo experiments performed to assesse reactive oxygen species (ROS), nitric oxide (NO), endothelium-dependent vasorelaxation, systemic blood pressure, and mitochondrial function in human umbilical vein endothelial cells (HUVECs) and C57BL/6 mouse aortic endothelial cells, under vehicle or sunitinib treatment condition.

View Article and Find Full Text PDF

Intra-Mesopore Immunoassay Based on Core-Shell Structured Magnetic Hierarchically Porous ZIFs.

ACS Sens

January 2025

Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.

It is crucial yet challenging to sensitively quantify low-abundance biomarkers in blood for early screening and diagnosis of various diseases. Herein, an analytical model of intra-mesopore immunoassay (IMIA) was proposed, which was competent to examine various biomarkers at the femtomolar level. The success is rooted in the design of an innovative superparamagnetic core-shell structure with FeO nanoparticles (NPs) at the core and hierarchically porous zeolitic imidazolate frameworks as a shell (FeO@HPZIF-8), achieved through a soft-template directed self-assembly coupled with confinement growth mechanism.

View Article and Find Full Text PDF

Lysosomal dysfunction and inflammatory sterol metabolism in pulmonary arterial hypertension.

Science

January 2025

Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA.

Vascular inflammation regulates endothelial pathophenotypes, particularly in pulmonary arterial hypertension (PAH). Dysregulated lysosomal activity and cholesterol metabolism activate pathogenic inflammation, but their relevance to PAH is unclear. Nuclear receptor coactivator 7 () deficiency in endothelium produced an oxysterol and bile acid signature through lysosomal dysregulation, promoting endothelial pathophenotypes.

View Article and Find Full Text PDF

Decoding the Therapeutic Target SVEP1: Harnessing Molecular Trait GWASs to Unravel Mechanisms of Human Disease.

Annu Rev Pharmacol Toxicol

January 2025

Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA; email:

Although human genetics has substantial potential to illuminate novel disease pathways and facilitate drug development, identifying causal variants and deciphering their mechanisms remain challenging. We believe these challenges can be addressed, in part, by creatively repurposing the results of molecular trait genome-wide association studies (GWASs). In this review, we introduce techniques related to molecular GWASs and unconventionally apply them to understanding , a human coronary artery disease risk locus.

View Article and Find Full Text PDF

Angiotensin receptor-neprilysin inhibitor (ARNI) and angiotensin II receptor blockers (ARB) are antihypertension medications that improve cardiac remodeling and protect the heart. However, at the early stage of hypertension, it is still unclear how these two drugs affect the transcriptomic profile of multiple organs in hypertensive rats and the transcriptomic differences between them. We performed RNA sequencing to define the RNA expressing profiles of the eight tissues (atrium, ventricle, aorta, kidney, brain, lung, white fat, and brown fat) in spontaneously hypertensive rats (SHRs) and SHRs treated with ARNI or ARB.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!