Peptoids are oligomers of N-substituted glycines with predictable folding and strong potentials as guest-binding receptor molecules. In this contribution, we investigate the structural features of a series of designed symmetric cyclic octamer peptoids (with methoxyethyl/propargyl side chains) as free hosts and reveal their morphologic changes in the presence of sodium and alkylammonium guests as tetrakis[3,5-bis(trifluoromethyl)phenyl]borate salts, reporting the first case of reversible adaptive switching between defined conformational states induced by cationic guests (Na and benzylammonium ion) in the peptoid field. The reported results are based on H NMR data, theoretical models, and single-crystal X-ray diffraction analysis. They represent initial steps toward deciphering the unique conformational states of cyclic octamer peptoids as supramolecular hosts with the aim to fully disclose their functional and dynamic properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.joc.8b01990 | DOI Listing |
Enzymatic asymmetric synthesis of l-phenylglycine by amino acid dehydrogenases has potential for industrial applications; however, this is hindered by their low catalytic efficiency toward high-concentration substrates. We identified and characterized a novel leucine dehydrogenase (LeuDH) with a high catalytic efficiency for benzoylformic acid via directed metagenomic approaches. Further, we obtained a triple-point mutant LeuDH-EER (D332E/G333E/L334R) with improved stability and catalytic efficiency through the rational design of distal loop 13.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
Computer-aided drug discovery (CADD) utilizes computational methods to accelerate the identification and optimization of potential drug candidates. Free energy perturbation (FEP) and thermodynamic integration (TI) play a critical role in predicting differences in protein binding affinities between drug molecules. Here, we implement SPONGE-FEP, which incorporates selective integrated tempering sampling (SITS) to enhance sampling efficiency and contains an automated workflow for relative binding free energy (RBFE) calculations.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Department of Genome Sciences, University of Virginia, PO Box 800717, Charlottesville, VA 22908, USA.
Many transcription factors (TFs) have been shown to bind to super-enhancers, forming transcriptional condensates to activate transcription in various cellular systems. However, the genomic and epigenomic determinants of phase-separated transcriptional condensate formation remain poorly understood. Questions regarding which TFs tend to associate with transcriptional condensates and what factors influence their association are largely unanswered.
View Article and Find Full Text PDFAngiotensin-I converting enzyme (ACE) regulates the levels of disparate bioactive peptides, notably converting angiotensin-I to angiotensin-II and degrading amyloid beta. ACE is a heavily glycosylated dimer, containing 4 analogous catalytic sites, and exists in membrane bound and soluble (sACE) forms. ACE inhibition is a frontline, FDA-approved, therapy for cardiovascular diseases yet is associated with significant side effects, including higher rates of lung cancer.
View Article and Find Full Text PDFMisfolding and aggregation of proteins into amyloidogenic assemblies are key features of several metabolic and neurodegenerative diseases. Human insulin has long been known to form amyloid fibrils under various conditions, which affects its bioavailability and function. Clinically, insulin aggregation at recurrent injection sites poses a challenge for diabetic patients who rely on insulin therapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!