Dual-Carbon-Confined Fe S Anodes with Enhanced Electrochemical Catalytic Conversion Process for Ultralong Lithium Storage.

Chemistry

State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P.R. China.

Published: November 2018

AI Article Synopsis

  • The electrochemical performance of lithium-ion batteries is hindered by poor contact between metal catalysts and substrates, as well as the instability of the solid electrolyte interface (SEI) film.
  • A novel approach using dual-carbon-confined Fe S nanoparticles, encapsulated by reduced graphene oxide and amorphous carbon, helps to stabilize the SEI and enhances the efficiency of electrochemical reactions.
  • This dual-carbon structure enables faster electron movement and improved lithium ion transport, resulting in impressive reversible capacities and cycling stability for the Fe S/C/RGO anode.

Article Abstract

Although the electrochemical catalytic conversion process is effective in increasing the reversible capacity of lithium-ion batteries, the low contact efficiency between metal catalyst and substrate and pulverization of the solid electrolyte interface (SEI) film without protection are not beneficial for the electrochemical reactions. Herein, Fe S nanoparticles are confined by both reduced graphene oxide (RGO) and in-situ-formed amorphous carbon (C) to form dual-carbon-confined Fe S as a lithium-ion anode. The dual-carbon-confined structure provides a confined space to prevent pulverization of the SEI film and increases the local concentration of intermediate phases, which could be electrocatalytically decomposed by Fe nanoparticles formed in situ to increase the reversibility of the electrochemical reactions and gain high reversible capacity. In addition, the dual-carbon-confined structure ensures fast transfer of electrons and boosts transport of lithium ions due to the highly conductive dual-carbon shell. Thus, the Fe S /C/RGO anode delivers an excellent rate performance and long cycling stability. At current densities of 2000 and 5000 mA g , the reversible capacities are 520 mA h g over 1500 cycles and 294 mA h g over 2000 cycles, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201804221DOI Listing

Publication Analysis

Top Keywords

electrochemical catalytic
8
catalytic conversion
8
conversion process
8
reversible capacity
8
sei film
8
electrochemical reactions
8
dual-carbon-confined structure
8
dual-carbon-confined
4
dual-carbon-confined anodes
4
anodes enhanced
4

Similar Publications

This study focuses on enhancing the water oxidation reaction (WOR) efficacy of dinuclear cobalt complex catalysts from both kinetic (turnover frequency, TOF) and thermodynamic (overpotential, η) perspectives. For this purpose, we synthesized six dinuclear cobalt complexes 1-6 comprising non-innocent ligands with different electronically active substituents (-OMe (1), -Me (2), -H (3), -F (4), -Cl (5), and -CN (6)). The electronic effects on the electrochemical WOR under neutral, acidic, and alkaline conditions were investigated experimentally and computationally.

View Article and Find Full Text PDF

Discovery and Characterization of a Metastable Cubic Interstitial Nickel-Carbon System with an Expanded Lattice.

ACS Nano

January 2025

Faculty III Process Sciences, Institute of Materials Science and Technology, Chair of Advanced Ceramic Materials, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany.

Metastable, , kinetically favored but thermodynamically not stable, interstitial solid solutions of carbon in iron are well-understood. Carbon can occupy the interstitial atoms of the host metal, altering its properties. Alloying of the host metal results in the stabilization of the FeC phases, widening its application.

View Article and Find Full Text PDF

Laser-Induced Metal-Organic Framework-Derived Flexible Electrodes for Electrochemical Sensing.

ACS Appl Mater Interfaces

January 2025

Neuroelectronics, Munich Institute of Biomedical Engineering, Department of Electrical Engineering, School of Computation, Information and Technology, Technical University of Munich, Hans-Piloty-Str. 1, 85748 Garching, Germany.

The successful development of a metal-organic framework (MOF)-derived Co/CoO/C core-shell composite integrated into laser-induced graphitic (LIG) carbon electrodes for electrochemical sensing is reported. The sensors are fabricated via a direct laser scribing technique using a UV laser (355 nm wavelength) to induce the photothermolysis of rationally selected ZIF-67 into the LIG matrix. Electrochemical characterization reveals that the incorporation of the laser-scribed ZIF-67-derived composite on the electrode surface reduces the impedance more than 100 times compared with bare LIG sensors.

View Article and Find Full Text PDF

It is of great significance to develop sensors for trace pesticide residues detection in food. Herein, an electrochemiluminescence (ECL) sensor with high sensitivity for the detection of methyl parathion (MP) was constructed by combining of the acetylcholinesterase (AChE) enzyme-inhibited reaction with tris-2,2'-bipyridyl ruthenium Ru(bpy) -triethylamine (TEA) system for the first time. A new ECL probe of MIL-100 loaded with Ru(bpy) (Ru-MIL-100) was synthesized, and then Ru-MIL-100 and AChE were immobilized on the electrode with Nafion.

View Article and Find Full Text PDF

Renewable energy-driven electrochemical CO2 reduction has emerged as a promising technology for a sustainable future. However, achieving efficient production of storable liquid fuels at ampere-level current densities remains a significant hurdle in the large-scale implementation of CO2 electroreduction. Here we report a novel catalytic electrode comprising chlorine-doped SnO2 nanoflowers arrayed on the exterior of three-dimensional nickel hollow fibers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!