Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Helical states, a prerequisite for the engineering of Majorana zero modes in solid-state systems, have recently been reported in the conduction band of III-V nanowires (NWs) subject to strong Rashba spin-orbit interaction. We report the observation of re-entrant conductance features consistent with the presence of helical hole states in multiple conduction modes of a Ge/Si core/shell NW. The Ge/Si system has several potential advantages over electron systems such as longer spin coherence time due to weaker coupling to nuclear spins and the possibility of isotope-purified materials for nuclear spin-free devices. We derive the Landé g factor of 3.6 from magneto-transport measurements, comparable to theoretical predictions and significantly larger when compared with that in strongly confined quantum dots. The spin-orbit energy is evaluated as ∼2.1 meV, on par with values in III-V NWs, showing good agreement with previous theoretical predictions and weak antilocalization measurements.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.8b01799 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!