In this paper, we propose a large-scale multiple testing procedure to find the significant sub-areas between two samples of curves automatically. The procedure is optimal in that it controls the directional false discovery rate at any specified level on a continuum asymptotically. By introducing a nonparametric Gaussian process regression model for the two-sided multiple test, the procedure is computationally inexpensive. It can cope with problems with multidimensional covariates and accommodate different sampling designs across the samples. We further propose the significant curve/surface, giving an insight on dynamic significant differences between two curves. Simulation studies demonstrate that the proposed procedure enjoys superior performance with strong power and good directional error control. The procedure is also illustrated with the application to two executive function studies in hemiplegia.

Download full-text PDF

Source
http://dx.doi.org/10.1002/sim.7968DOI Listing

Publication Analysis

Top Keywords

directional error
8
error control
8
procedure
5
automatic detection
4
detection areas
4
areas functional
4
functional data
4
data directional
4
control paper
4
paper propose
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!