The transition between the breeding and nonbreeding states is often marked by a shift in energy balance. Despite this well-known shift in energy balance, little work has explored seasonal differences in the orexigenic neuropeptides that regulate food intake in wild animals. Here we tested the hypothesis that free-living male song sparrows (Melospiza melodia) show seasonal changes in energetic state, circulating steroids, and both neuropeptide Y (NPY) and orexin (OX) immunoreactivity. Nonbreeding song sparrows had more fat and muscle, as well as a ketone and triglyceride profile suggesting a greater reliance on lipid reserves. Breeding birds had higher plasma androgens; however, nonbreeding birds did maintain androgen precursors in circulation. Nonbreeding birds had more NPY immunoreactivity, specifically in three brain regions: lateral septum, bed nucleus of the stria terminalis, and ventral tegmental area. Furthermore, nonbreeding birds had more OX immunoreactivity in multiple brain regions. Taken together, the data indicate that a natural shift in energy balance is associated with changes in NPY and OX in a region-specific manner.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cne.24535DOI Listing

Publication Analysis

Top Keywords

energy balance
16
shift energy
12
nonbreeding birds
12
orexin immunoreactivity
8
seasonal changes
8
song sparrows
8
brain regions
8
nonbreeding
5
neuropeptide orexin
4
immunoreactivity
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!