Recent evidence demonstrates that the pulvinar nuclei play a critical role in shaping the connectivity and function of the multiple cortical areas they connect. Surprisingly, however, little is known about the development of this area, the largest corpus of the thalamic nuclei, which go on to occupy 40% of the adult thalamus in the human. It was proposed that the nonhuman primate and the human pulvinar develop according to very different processes, with a greatly reduced neurogenic period in nonhuman primate compared to human and divergent origins. In the marmoset monkey, we demonstrate that neurons populating the pulvinar are generated throughout gestation, suggesting that this aspect of development is more similar to the human than first predicted. While we were able to confirm the diencephalic source of pulvinar neurons, we provide new evidence contesting the presence of an additional niche in the telencephalon. Finally, our study defines new molecular markers that will simplify future investigations in the development and evolution of the pulvinar.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cne.24534 | DOI Listing |
Background: The key advantage of active immunization is the induction of sustained, polyclonal antibody responses that are readily boosted by occasional immunizations. Recent clinical trial outcomes for monoclonal antibodies lecanemab and donanemab, establish the relevance of targeting pathological Abeta for clearing amyloid plaques in Alzheimer's disease. ACI-24.
View Article and Find Full Text PDFBackground: The hyperphosphorylation, mislocalization, and aggregation of the microtubule associated protein Tau (MAPT) is a driving force in tauopathies, a group of progressive, neurodegenerative disorders. These pathogenic intracellular aggregates, known as neurofibrillary tangles (NFTs), are a hallmark in several diseases such as frontotemporal dementia, progressive supranuclear palsy, and Alzheimer's Disease. While anti-Tau immunotherapies emphasize the clearance of extracellular Tau aggregates, they do not address the intracellular accumulation of NFTs.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
National Institute on Aging, NIH, Baltimore, MD, USA.
Background: Epidemiological studies report an elevated risk of neurodegenerative disorders, particularly Parkinson's disease (PD), in patients with type 2 diabetes mellitus (T2DM) that is mitigated in those prescribed incretin mimetics or dipeptidyl peptidase 4 inhibitors (DPP-4Is). Incretin mimetic repurposing appears promising in human PD and Alzheimer's disease (AD) clinical trials. DPP-4Is are yet to be evaluated in PD or AD human studies.
View Article and Find Full Text PDFBackground: TREM2 is a lipid-sensing receptor expressed by microglial sub-populations within neuropathological microenvironments, whose downstream signaling promotes microglial survival, plasticity, and migration. Multiple loss-of-function variants strongly implicate TREM2 as a key regulator of Alzheimer's disease (AD) risk. Accordingly, TREM2 antibodies are currently in development to evaluate the therapeutic potential of TREM2 agonism in neurodegenerative diseases.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
Background: Our limited understanding of the mechanisms that trigger the emergence of Alzheimer's disease (AD) has contributed to the lack of interventions that stop, prevent, or fully treat this disease. We believe that developing a nonhuman primate model of AD will be an essential step toward overcoming the limitations of other model systems and is crucial for investigating primate-specific mechanisms underlying the cellular and molecular root causes of the pathogenesis and progression of AD.
Method: The consortium successfully generated viable founders carrying PSEN1 mutations.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!