A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Complete genome sequence of a novel sea otterpox virus. | LitMetric

Complete genome sequence of a novel sea otterpox virus.

Virus Genes

Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32610, USA.

Published: December 2018

Members of the Poxviridae family are large, double-stranded DNA viruses that replicate in the cytoplasm of their host cells. The subfamily Chordopoxvirinae contains viruses that infect a wide range of vertebrates including marine mammals within the Balaenidae, Delphinidae, Mustelidae, Odobenidae, Otariidae, Phocidae, and Phocoenidae families. Recently, a novel poxvirus was found in a northern sea otter pup (Enhydra lutris kenyoni) that stranded in Alaska in 2009. The phylogenetic relationships of marine mammal poxviruses are not well established because of the lack of complete genome sequences. The current study sequenced the entire sea otterpox virus Enhydra lutris kenyoni (SOPV-ELK) genome using an Illumina MiSeq sequencer. The SOPV-ELK genome is the smallest poxvirus genome known at 127,879 bp, is 68.7% A+T content, is predicted to encode 132 proteins, and has 2546 bp inverted terminal repeats at each end. Genetic and phylogenetic analyses based on the concatenated amino acid sequences of 7 chorodopoxvirus core genes revealed the SOPV-ELK is 52.5-74.1% divergent from other known chordopoxviruses and is most similar to pteropoxvirus from Australia (PTPV-Aus). SOPV-ELK represents a new chordopoxvirus species and may belong to a novel genus. SOPV-ELK encodes eight unique genes. While the function of six predicted genes remains unknown, two genes appear to function as novel immune-modulators. SOPV-ELK-003 appears to encode a novel interleukin-18 binding protein (IL-18 BP), based on limited sequence and structural similarity to other poxviral IL-18 BPs. SOPV-ELK-035 appears to encode a novel tumor necrosis factor receptor-like (TNFR) protein that may be associated with the depression of the host's antiviral response. Additionally, SOPV-ELK-036 encodes a tumor necrosis factor-like apoptosis-inducing ligand (TRAIL) protein that has previously only been found in PTPV-Aus. The SOPV-ELK genome is the first mustelid poxvirus and only the second poxvirus from a marine mammal to be fully sequenced. Sequencing of the SOPV-ELK genome is an important step in unraveling the position of marine mammal poxviruses within the larger Poxviridae phylogenetic tree and provides the necessary sequence to develop molecular tools for future diagnostics and epidemiological studies.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11262-018-1594-8DOI Listing

Publication Analysis

Top Keywords

sopv-elk genome
16
marine mammal
12
complete genome
8
sea otterpox
8
otterpox virus
8
enhydra lutris
8
lutris kenyoni
8
mammal poxviruses
8
ptpv-aus sopv-elk
8
appears encode
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!