Tuberculosis is a significant global health threat, with one-third of the world's population infected with its causative agent Mycobacterium tuberculosis (Mtb). The emergence of multidrug-resistant (MDR) Mtb that is resistant to the frontline anti-tubercular drugs rifampicin and isoniazid forces treatment with toxic second-line drugs. Currently, ~4% of new and ~21% of previously treated tuberculosis cases are either rifampicin-drug-resistant or MDR Mtb infections. The specific molecular host-pathogen interactions mediating the rapid worldwide spread of MDR Mtb strains remain poorly understood. W-Beijing Mtb strains are highly prevalent throughout the world and associated with increased drug resistance. In the early 1990s, closely related MDR W-Beijing Mtb strains (W strains) were identified in large institutional outbreaks in New York City and caused high mortality rates. The production of interleukin-1β (IL-1β) by macrophages coincides with the shift towards aerobic glycolysis, a metabolic process that mediates protection against drug-susceptible Mtb. Here, using a collection of MDR W-Mtb strains, we demonstrate that the overexpression of Mtb cell wall lipids, phthiocerol dimycocerosates, bypasses the interleukin 1 receptor, type I (IL-1R1) signalling pathway, instead driving the induction of interferon-β (IFN-β) to reprogram macrophage metabolism. Importantly, Mtb carrying a drug resistance-conferring single nucleotide polymorphism in rpoB (H445Y) can modulate host macrophage metabolic reprogramming. These findings transform our mechanistic understanding of how emerging MDR Mtb strains may acquire drug resistance single nucleotide polymorphisms, thereby altering Mtb surface lipid expression and modulating host macrophage metabolic reprogramming.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6158078PMC
http://dx.doi.org/10.1038/s41564-018-0245-0DOI Listing

Publication Analysis

Top Keywords

mdr mtb
16
mtb strains
16
drug resistance
12
mtb
11
mycobacterium tuberculosis
8
macrophage metabolism
8
cell wall
8
w-beijing mtb
8
single nucleotide
8
host macrophage
8

Similar Publications

Multidrug-resistant tuberculosis (MDR-TB) poses a significant global health threat, especially when it involves the central nervous system (CNS). Tuberculous meningitis (TBM), a severe manifestation of TB, is linked to high mortality rates and long-term neurological complications, further exacerbated by drug resistance and immune evasion mechanisms employed by Mycobacterium tuberculosis (Mtb). Although pulmonary TB remains the primary focus of research, MDR-TBM introduces unique challenges in diagnosis, treatment, and patient outcomes.

View Article and Find Full Text PDF

Globally, drug-resistant tuberculosis (DR-TB) is responsible for 13% of mortality attributable to antimicrobial resistance. In Ethiopia, extrapulmonary tuberculosis (EPTB) is a significant public health challenge, and drug resistance (DR) in EPTB is often overlooked. In a cross-sectional study conducted between August 2022 and October 2023, we aimed to explore the magnitude of phenotypic drug resistance and identify genetic mutations linked to resistance using 189 Mycobacterium tuberculosis (MTB) isolates cultured from extrapulmonary clinical specimens.

View Article and Find Full Text PDF

A Lumbar Drug-Resistant Tuberculosis: A Case Report and Review of Literature.

Infect Drug Resist

December 2024

Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.

Introduction: Tuberculosis is prevalent in high-burden countries. However, spinal multi-drug resistant tuberculosis (MDR-TB) in patients with normal immune function is a disease that is prone to misdiagnosis and even delayed diagnosis. Recently, we successfully treated one such patient.

View Article and Find Full Text PDF

The Molecular Bacterial Load Assay predicts treatment responses in patients with pre-XDR/XDR-tuberculosis more accurately than GeneXpert Ultra MTB/Rif.

J Infect

December 2024

German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany; Division of Clinical Infectious Diseases, Research Center Borstel, Parkallee 1-40, 23845 Borstel, Germany.

Objectives: Early detection of treatment failure is essential to improve the management of drug-resistant tuberculosis (DR-TB). We evaluated the molecular bacterial load assay (MBLA) in comparison to standard diagnostic tests for monitoring therapy of patients affected by drug-resistant TB.

Methods: The performance of MBLA in tracking treatment response in a prospective cohort of patients with pulmonary MDR/RR- and pre-XDR/XDR-TB was compared with mycobacterial culture, mycobacterial DNA detection using GeneXpert (Xpert) and microscopy detection of sputum acid-fast-bacilli.

View Article and Find Full Text PDF

Introduction: Tuberculosis (TB) treatment typically involves a tailored combination of four antibiotics based on the drug resistance profile of the infecting strain. The increasing drug resistance of () requires the development of novel antibiotics to ensure effective treatment regimens. Gallium (Ga) is being explored as a repurposed drug against TB due to its ability to inhibit growth and disrupt iron metabolism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!