Transient posterior cerebral arteriopathy: An unusual case enterovirus-related.

Brain Dev

Child Neuropsychiatry Unit, Mother and Child Department, University-Hospital of Parma, Parma, Italy; Child Neuropsychiatry Unit, Medicine and Surgery Department, University of Parma, Parma, Italy.

Published: February 2019

Transient Cerebral Arteriopathy (TCA) is one of the main causes of childhood stroke. Here we present an unusual case of Arterial Ischemic Stroke (AIS) caused by a TCA of posterior flow and originally located in the right thalamus. The detection of enterovirus in the cerebrospinal fluid allowed us to suppose a probable post infectious etiology. The course of symptoms was self-limited and the child had a complete clinical recovery after five days. A new ischemic lesion on the antero-inferior paravermian region of the left cerebellum was revealed by a following brain Magnetic Resonance Imaging (MRI) three months later and these findings were reported by further brain MRI control performed after 15 months. Comparing follow up Magnetic Resonance Angiography (MRA) with previous High Resolution Vessel Wall Magnetic Resonance Imaging (HRMI), we found a vessel narrowing at the level of the Posterior Inferior Cerebellar Artery that might explain the arteriopathy process. In conclusion, clinical and radiological course allow us to speculate that this multifocal cerebral arteriopathy might be a transient lesion due to enterovirus infection. To our knowledge, there are only three articles describing TCA enterovirus-related, and brain MRA was performed in only one case; in addition, no one with the involvement of the posterior circulation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.braindev.2018.09.002DOI Listing

Publication Analysis

Top Keywords

cerebral arteriopathy
12
magnetic resonance
12
unusual case
8
resonance imaging
8
transient posterior
4
posterior cerebral
4
arteriopathy
4
arteriopathy unusual
4
case enterovirus-related
4
enterovirus-related transient
4

Similar Publications

Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is the most common hereditary cerebral small vessel disease caused by mutations in the NOTCH3 gene. This review highlights the increasing recognition of intracerebral hemorrhage (ICH) as a significant manifestation of CADASIL, often predominantly characterized by ischemic strokes and vascular dementia. Recent studies indicate that the prevalence of ICH in CADASIL patients ranges from 0.

View Article and Find Full Text PDF

Background: Since older adults spend significant time in their neighborhood environment, environmental factors such as neighborhood socioeconomic disadvantage, high racial segregation, low healthy food availability, low access to recreation, and minimal social engagement may have adverse effects on cognitive function and increase susceptibility to dementia. DNA methylation, which is associated with neighborhood characteristics as well as cognitive function and white matter hyperintensity (WMH), may act as a mediator between neighborhood characteristics and neurocognitive outcomes.

Methods: In this study, we examined whether DNA methylation in peripheral blood leukocytes mediates the relationship between neighborhood characteristics and cognitive function (N = 542) or WMH (N = 466) in older African American (AA) participants without preliminary evidence of dementia from the Genetic Epidemiology Network of Arteriopathy (GENOA).

View Article and Find Full Text PDF

Background: Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is one of the most common inherited cerebral small vessel diseases caused by the NOTCH3 gene mutation. This mutation leads to the accumulation of NOTCH3 extracellular domain protein (NOTCH3) into the cerebral arterioles, causing recurrent stroke, white matter lesions, and cognitive impairment. With the development of gene sequencing technology, cysteine-sparing mutations can also cause CADASIL disease, however, the pathogenicity and pathogenic mechanisms of cysteine-sparing mutations remain controversial.

View Article and Find Full Text PDF

Two types of arteriopathies, arteriomegaly and aneurysms, frequently develop at diverse locations in vertebrobasilar dolichoectasia patients: A retrospective analysis and a meta-analysis.

J Clin Neurosci

January 2025

Department of Neurovascular Research, Kobe City Medical Center General Hospital, 2-1-1 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan; Department of Neurosurgery, Seijinkai Shimizu Hospital, 11-2 Yamadanakayoshimicho, Nishikyo-ku, Kyoto, Japan.

Background: Past studies have reported that vertebrobasilar dolichoectasia (VBD) patients may develop similar arteriopathies other than the vertebrobasilar system. However, the details of these VBD-related arteriopathies are still unclear.

Methods: We retrospectively enrolled patients diagnosed with VBD at two stroke centers in Japan between January 2012 and December 2023.

View Article and Find Full Text PDF

Targeted exonic sequencing identifies novel variants in a cerebral small vessel disease cohort.

Clin Chim Acta

December 2024

Queensland University of Technology (QUT), Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, 60 Musk Ave., Kelvin Grove, Queensland 4059, Australia. Electronic address:

Background And Aims: Cerebral small vessel diseases (CSVDs) are a set of conditions that affect the small blood vessels in the brain and can cause severe neurological pathologies such as stroke and vascular dementia. The most common monogenic CSVD is cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) which is caused by mutations in NOTCH3. However, only 15-20% of CADASIL cases referred for genetic testing have pathogenic mutations in NOTCH3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!