The current review examines how neurobiological models of language and cognition could shed light on the role of phonological working memory (PWM) in developmental stuttering (DS). Toward that aim, we review Baddeley's influential multicomponent model of PWM and evidence for load-dependent differences between children and adults who stutter and typically fluent speakers in nonword repetition and dual-task paradigms. We suggest that, while nonword repetition and dual-task findings implicate processes related to PWM, it is unclear from behavioral studies alone what mechanisms are involved. To address how PWM could be related to speech output in DS, a third section reviews neurobiological models of language proposing that PWM is an emergent property of cyclic sensory and motor buffers in the dorsal stream critical for speech production. We propose that anomalous sensorimotor timing could potentially interrupt both fluent speech in DS and the emergent properties of PWM. To further address the role of attention and executive function in PWM and DS, we also review neurobiological models proposing that prefrontal cortex (PFC) and basal ganglia (BG) function to facilitate working memory under distracting conditions and neuroimaging evidence implicating the PFC and BG in stuttering. Finally, we argue that cognitive-behavioral differences in nonword repetition and dual-tasks are consistent with the involvement of neurocognitive networks related to executive function and sensorimotor integration in PWM. We suggest progress in understanding the relationship between stuttering and PWM may be accomplished using high-temporal resolution electromagnetic experimental approaches.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jfludis.2018.08.006 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!